
Blessed Documentation
Release 1.9.4

Jeff Quast

October 03, 2015

Contents

1 Read The Readme First 1

2 API Documentation 3
2.1 terminal module (primary) . 3
2.2 formatters module . 6
2.3 keyboard module . 7
2.4 sequences module . 8

Python Module Index 11

i

ii

CHAPTER 1

Read The Readme First

This is the API documentation for the Blessed terminal library.

Because Blessed uses quite a bit of dynamism, you should read the readme first for a general guide and overview.

However, if you’re looking for the documentation of the internal classes, their methods, and related functions that
make up the internals, you’re in the right place.

1

http://pypi.python.org/pypi/blessed

Blessed Documentation, Release 1.9.4

2 Chapter 1. Read The Readme First

CHAPTER 2

API Documentation

Internal modules are as follows.

2.1 terminal module (primary)

This primary module provides the Terminal class.

class blessed.terminal.Terminal(kind=None, stream=None, force_styling=False)
A wrapper for curses and related terminfo(5) terminal capabilities.

Instance attributes:

stream The stream the terminal outputs to. It’s convenient to pass the stream around with the
terminal; it’s almost always needed when the terminal is and saves sticking lots of extra args on
client functions in practice.

kind
Name of this terminal type as string.

does_styling
Whether this instance will emit terminal sequences (bool).

is_a_tty
Whether the stream associated with this instance is a terminal (bool).

height
T.height -> int

The height of the terminal in characters.

width
T.width -> int

The width of the terminal in characters.

location(x=None, y=None)
Return a context manager for temporarily moving the cursor.

Move the cursor to a certain position on entry, let you print stuff there, then return the cursor to its original
position:

term = Terminal()
with term.location(2, 5):

print 'Hello, world!'

3

Blessed Documentation, Release 1.9.4

for x in xrange(10):
print 'I can do it %i times!' % x

Specify x to move to a certain column, y to move to a certain row, both, or neither. If you specify neither,
only the saving and restoration of cursor position will happen. This can be useful if you simply want to
restore your place after doing some manual cursor movement.

fullscreen()
Return a context manager that enters fullscreen mode while inside it and restores normal mode on leaving.

Fullscreen mode is characterized by instructing the terminal emulator to store and save the current screen
state (all screen output), switch to “alternate screen”. Upon exiting, the previous screen state is returned.

This call may not be tested; only one screen state may be saved at a time.

hidden_cursor()
Return a context manager that hides the cursor upon entering, and makes it visible again upon exiting.

color
Returns capability that sets the foreground color.

The capability is unparameterized until called and passed a number (0-15), at which point it returns another
string which represents a specific color change. This second string can further be called to color a piece of
text and set everything back to normal afterward.

Parameters num – The number, 0-15, of the color

on_color
Returns capability that sets the background color.

normal
Returns sequence that resets video attribute.

number_of_colors
Return the number of colors the terminal supports.

Common values are 0, 8, 16, 88, and 256. Most commonly this may be used to test color capabilities at
all:

if term.number_of_colors:
...

ljust(text[, width][, fillchar])→ unicode
Return string text, left-justified by printable length width. Padding is done using the specified fill
character (default is a space). Default width is the attached terminal’s width. text may contain terminal
sequences.

rjust(text[, width][, fillchar])→ unicode
Return string text, right-justified by printable length width. Padding is done using the specified fill
character (default is a space). Default width is the attached terminal’s width. text may contain terminal
sequences.

center(text[, width][, fillchar])→ unicode
Return string text, centered by printable length width. Padding is done using the specified fill char-
acter (default is a space). Default width is the attached terminal’s width. text may contain terminal
sequences.

length(text)→ int
Return the printable length of string text, which may contain terminal sequences. Strings containing
sequences such as ‘clear’, which repositions the cursor, does not give accurate results, and their printable
length is evaluated 0..

4 Chapter 2. API Documentation

Blessed Documentation, Release 1.9.4

strip(text)→ unicode
Return string text with terminal sequences removed, and leading and trailing whitespace removed.

rstrip(text)→ unicode
Return string text with terminal sequences and trailing whitespace removed.

lstrip(text)→ unicode
Return string text with terminal sequences and leading whitespace removed.

strip_seqs(text)→ unicode
Return string text stripped only of its sequences.

wrap(text[, width=None, **kwargs ..]) → list[unicode]
Wrap paragraphs containing escape sequences text to the full width of Terminal instance T, unless
width is specified. Wrapped by the virtual printable length, irregardless of the video attribute sequences
it may contain, allowing text containing colors, bold, underline, etc. to be wrapped.

Returns a list of strings that may contain escape sequences. See textwrap.TextWrapper for all
available additional kwargs to customize wrapping behavior such as subsequent_indent.

Note that the keyword argument break_long_words may not be set, it is not sequence-safe!

getch()→ unicode
Read and decode next byte from keyboard stream. May return u” if decoding is not yet complete, or
completed unicode character. Should always return bytes when self.kbhit() returns True.

Implementors of input streams other than os.read() on the stdin fd should derive and override this method.

kbhit([timeout=None])→ bool
Returns True if a keypress has been detected on keyboard.

When timeout is 0, this call is non-blocking, Otherwise blocking until keypress is detected (default).
When timeout is a positive number, returns after timeout seconds have elapsed.

If input is not a terminal, False is always returned.

cbreak()
Return a context manager that enters ‘cbreak’ mode: disabling line buffering of keyboard input, making
characters typed by the user immediately available to the program. Also referred to as ‘rare’ mode, this is
the opposite of ‘cooked’ mode, the default for most shells.

In ‘cbreak’ mode, echo of input is also disabled: the application must explicitly print any input received,
if they so wish.

More information can be found in the manual page for curses.h, http://www.openbsd.org/cgi-
bin/man.cgi?query=cbreak

The python manual for curses, http://docs.python.org/2/library/curses.html

Note also that setcbreak sets VMIN = 1 and VTIME = 0, http://www.unixwiz.net/techtips/termios-vmin-
vtime.html

raw()
Return a context manager that enters raw mode. Raw mode is similar to cbreak mode, in that characters
typed are immediately available to inkey() with one exception: the interrupt, quit, suspend, and flow
control characters are all passed through as their raw character values instead of generating a signal.

keypad()
Context manager that enables keypad input (keyboard_transmit mode).

This enables the effect of calling the curses function keypad(3x): display terminfo(5) capability key-
pad_xmit (smkx) upon entering, and terminfo(5) capability keypad_local (rmkx) upon exiting.

2.1. terminal module (primary) 5

http://www.openbsd.org/cgi-bin/man.cgi?query=cbreak
http://www.openbsd.org/cgi-bin/man.cgi?query=cbreak
http://docs.python.org/2/library/curses.html
http://www.unixwiz.net/techtips/termios-vmin-vtime.html
http://www.unixwiz.net/techtips/termios-vmin-vtime.html

Blessed Documentation, Release 1.9.4

On an IBM-PC keypad of ttype xterm, with numlock off, the lower-left diagonal key transmits sequence
\x1b[F, KEY_END.

However, upon entering keypad mode, \x1b[OF is transmitted, translating to KEY_LL (lower-left key),
allowing diagonal direction keys to be determined.

inkey(timeout=None, [esc_delay, [_intr_continue]]) -> Keypress()
Receive next keystroke from keyboard (stdin), blocking until a keypress is received or timeout elapsed,
if specified.

When used without the context manager cbreak, stdin remains line-buffered, and this function will block
until return is pressed, even though only one unicode character is returned at a time..

The value returned is an instance of Keystroke, with properties is_sequence, and, when True, non-
None values for attributes code and name. The value of code may be compared against attributes of this
terminal beginning with KEY, such as KEY_ESCAPE.

To distinguish between KEY_ESCAPE, and sequences beginning with escape, the esc_delay speci-
fies the amount of time after receiving the escape character (chr(27)) to seek for the completion of other
application keys before returning KEY_ESCAPE.

Normally, when this function is interrupted by a signal, such as the installment of SIGWINCH, this func-
tion will ignore this interruption and continue to poll for input up to the timeout specified. If you’d
rather this function return u’’ early, specify a value of False for _intr_continue.

class blessed.terminal.WINSZ(ws_row, ws_col, ws_xpixel, ws_ypixel)

ws_col
Alias for field number 1

ws_row
Alias for field number 0

ws_xpixel
Alias for field number 2

ws_ypixel
Alias for field number 3

2.2 formatters module

This sub-module provides formatting functions.

blessed.formatters.COLORS = {‘black’, ‘bright_black’, ‘on_bright_cyan’, ‘bright_yellow’, ‘on_red’, ‘bright_cyan’, ‘on_bright_white’, ‘magenta’, ‘on_bright_green’, ‘red’, ‘on_black’, ‘bright_green’, ‘bright_magenta’, ‘blue’, ‘green’, ‘white’, ‘on_bright_yellow’, ‘on_bright_red’, ‘on_white’, ‘cyan’, ‘bright_red’, ‘bright_blue’, ‘on_yellow’, ‘on_bright_black’, ‘on_cyan’, ‘on_blue’, ‘on_green’, ‘on_bright_magenta’, ‘on_magenta’, ‘bright_white’, ‘yellow’, ‘on_bright_blue’}
Valid colors and their background (on), bright, and bright-bg derivatives.

blessed.formatters.COMPOUNDABLES = {‘on_bright_blue’, ‘bright_black’, ‘on_bright_cyan’, ‘bright_yellow’, ‘on_red’, ‘bright_cyan’, ‘standout’, ‘on_bright_white’, ‘superscript’, ‘on_black’, ‘blue’, ‘bright_magenta’, ‘underline’, ‘on_white’, ‘cyan’, ‘blink’, ‘on_yellow’, ‘on_cyan’, ‘on_green’, ‘bright_white’, ‘dim’, ‘magenta’, ‘on_bright_green’, ‘red’, ‘bright_green’, ‘green’, ‘white’, ‘on_bright_yellow’, ‘on_bright_red’, ‘shadow’, ‘italic’, ‘reverse’, ‘bright_red’, ‘bright_blue’, ‘subscript’, ‘on_bright_black’, ‘on_blue’, ‘on_bright_magenta’, ‘on_magenta’, ‘yellow’, ‘bold’, ‘black’}
All valid compoundable names.

class blessed.formatters.ParameterizingString
A Unicode string which can be called as a parameterizing termcap.

For example:

>> term = Terminal()
>> color = ParameterizingString(term.color, term.normal, 'color')
>> color(9)('color #9')
u'[91mcolor #9(B[m'

6 Chapter 2. API Documentation

Blessed Documentation, Release 1.9.4

class blessed.formatters.ParameterizingProxyString
A Unicode string which can be called to proxy missing termcap entries.

For example:

>>> from blessed import Terminal
>>> term = Terminal('screen')
>>> hpa = ParameterizingString(term.hpa, term.normal, 'hpa')
>>> hpa(9)
u''
>>> fmt = u'[{0}G'
>>> fmt_arg = lambda *arg: (arg[0] + 1,)
>>> hpa = ParameterizingProxyString((fmt, fmt_arg), term.normal, 'hpa')
>>> hpa(9)
u'[10G'

blessed.formatters.get_proxy_string(term, attr)
Proxy and return callable StringClass for proxied attributes.

We know that some kinds of terminal kinds support sequences that the terminfo database often doesn’t report –
such as the ‘move_x’ attribute for terminal type ‘screen’, or ‘hide_cursor’ for ‘ansi’.

Returns instance of ParameterizingProxyString or NullCallableString.

class blessed.formatters.FormattingString
A Unicode string which can be called using text, returning a new string, attr + text + normal:

>> style = FormattingString(term.bright_blue, term.normal)
>> style('Big Blue')
u'[94mBig Blue(B[m'

class blessed.formatters.NullCallableString
A dummy callable Unicode to stand in for FormattingString and ParameterizingString for termi-
nals that cannot perform styling.

blessed.formatters.split_compound(compound)
Split a possibly compound format string into segments.

>>> split_compound('bold_underline_bright_blue_on_red')
['bold', 'underline', 'bright_blue', 'on_red']

blessed.formatters.resolve_capability(term, attr)
Return a Unicode string for the terminal capability attr, or an empty string if not found, or if terminal is
without styling capabilities.

blessed.formatters.resolve_color(T, color) -> FormattingString()
Resolve a color name to callable capability, FormattingString unless term.number_of_colors is
0, then NullCallableString.

Valid color capabilities names are any of the simple color names, such as red, or compounded, such as
on_bright_green.

blessed.formatters.resolve_attribute(term, attr)
Resolve a sugary or plain capability name, color, or compound formatting name into a callable unicode string
capability, ParameterizingString or FormattingString.

2.3 keyboard module

This sub-module provides ‘keyboard awareness’.

2.3. keyboard module 7

Blessed Documentation, Release 1.9.4

class blessed.keyboard.Keystroke
A unicode-derived class for describing keyboard input returned by the inkey() method of Terminal, which
may, at times, be a multibyte sequence, providing properties is_sequence as True when the string is a
known sequence, and code, which returns an integer value that may be compared against the terminal class
attributes such as KEY_LEFT.

is_sequence
Whether the value represents a multibyte sequence (bool).

name
String-name of key sequence, such as ’KEY_LEFT’ (str).

code
Integer keycode value of multibyte sequence (int).

blessed.keyboard.get_keyboard_codes()→ dict
Returns dictionary of (code, name) pairs for curses keyboard constant values and their mnemonic name. Such
as key 260, with the value of its identity, KEY_LEFT. These are derived from the attributes by the same of the
curses module, with the following exceptions:

•KEY_DELETE in place of KEY_DC

•KEY_INSERT in place of KEY_IC

•KEY_PGUP in place of KEY_PPAGE

•KEY_PGDOWN in place of KEY_NPAGE

•KEY_ESCAPE in place of KEY_EXIT

•KEY_SUP in place of KEY_SR

•KEY_SDOWN in place of KEY_SF

blessed.keyboard.get_keyboard_sequences(T) -> (OrderedDict)
Initialize and return a keyboard map and sequence lookup table, (sequence, constant) from blessed Terminal
instance term, where sequence is a multibyte input sequence, such as u’[D’, and constant is a constant,
such as term.KEY_LEFT. The return value is an OrderedDict instance, with their keys sorted longest-first.

2.4 sequences module

This sub-module provides ‘sequence awareness’ for blessed.

blessed.sequences.init_sequence_patterns(term)
Given a Terminal instance, term, this function processes and parses several known terminal capabilities, and
builds and returns a dictionary database of regular expressions, which may be re-attached to the terminal by
attributes of the same key-name:

_re_will_move any sequence matching this pattern will cause the terminal cursor to move (such as
term.home).

_re_wont_move any sequence matching this pattern will not cause the cursor to move (such as term.bold).

_re_cuf regular expression that matches term.cuf(N) (move N characters forward), or None if temrinal is
without cuf sequence.

_cuf1 term.cuf1 sequence (cursor forward 1 character) as a static value.

_re_cub regular expression that matches term.cub(N) (move N characters backward), or None if terminal is
without cub sequence.

_cub1 term.cuf1 sequence (cursor backward 1 character) as a static value.

8 Chapter 2. API Documentation

Blessed Documentation, Release 1.9.4

These attributes make it possible to perform introspection on strings containing sequences generated by this
terminal, to determine the printable length of a string.

class blessed.sequences.SequenceTextWrapper(width, term, **kwargs)
Object for wrapping/filling text. The public interface consists of the wrap() and fill() methods; the other methods
are just there for subclasses to override in order to tweak the default behaviour. If you want to completely replace
the main wrapping algorithm, you’ll probably have to override _wrap_chunks().

Several instance attributes control various aspects of wrapping:

width (default: 70) the maximum width of wrapped lines (unless break_long_words is false)

initial_indent (default: “”) string that will be prepended to the first line of wrapped output. Counts
towards the line’s width.

subsequent_indent (default: “”) string that will be prepended to all lines save the first of wrapped output;
also counts towards each line’s width.

expand_tabs (default: true) Expand tabs in input text to spaces before further processing. Each tab will
become 0 .. ‘tabsize’ spaces, depending on its position in its line. If false, each tab is treated as a
single character.

tabsize (default: 8) Expand tabs in input text to 0 .. ‘tabsize’ spaces, unless ‘expand_tabs’ is false.

replace_whitespace (default: true) Replace all whitespace characters in the input text by spaces after
tab expansion. Note that if expand_tabs is false and replace_whitespace is true, every tab will be
converted to a single space!

fix_sentence_endings (default: false) Ensure that sentence-ending punctuation is always followed by
two spaces. Off by default because the algorithm is (unavoidably) imperfect.

break_long_words (default: true) Break words longer than ‘width’. If false, those words will not be
broken, and some lines might be longer than ‘width’.

break_on_hyphens (default: true) Allow breaking hyphenated words. If true, wrapping will occur
preferably on whitespaces and right after hyphens part of compound words.

drop_whitespace (default: true) Drop leading and trailing whitespace from lines.

max_lines (default: None) Truncate wrapped lines.

placeholder (default: ‘ [...]’) Append to the last line of truncated text.

class blessed.sequences.Sequence
This unicode-derived class understands the effect of escape sequences of printable length, allowing a properly
implemented .rjust(), .ljust(), .center(), and .len()

ljust(width, fillchar)→ unicode
Returns string derived from unicode string S, left-adjusted by trailing whitespace padding fillchar.

rjust(width, fillchar=u’‘)→ unicode
Returns string derived from unicode string S, right-adjusted by leading whitespace padding fillchar.

center(width, fillchar=u’‘)→ unicode
Returns string derived from unicode string S, centered and surrounded with whitespace padding
fillchar.

length()→ int
Returns printable length of unicode string S that may contain terminal sequences.

Although accounted for, strings containing sequences such as term.clearwill not give accurate returns,
it is not considered lengthy (a length of 0). Combining characters, are also not considered lengthy.

2.4. sequences module 9

Blessed Documentation, Release 1.9.4

Strings containing term.left or will cause “overstrike”, but a length less than 0 is not ever returned.
So _+ is a length of 1 (+), but is simply a length of 0.

Some characters may consume more than one cell, mainly those CJK Unified Ideographs (Chinese,
Japanese, Korean) defined by Unicode as half or full-width characters.

For example:

>>> from blessed import Terminal
>>> from blessed.sequences import Sequence
>>> term = Terminal()
>>> Sequence(term.clear + term.red(u'')).length()
5

strip([chars])→ unicode
Return a copy of the string S with terminal sequences removed, and leading and trailing whitespace re-
moved.

If chars is given and not None, remove characters in chars instead.

lstrip([chars])→ unicode
Return a copy of the string S with terminal sequences and leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

rstrip([chars])→ unicode
Return a copy of the string S with terminal sequences and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

strip_seqs()→ unicode
Return a string without sequences for a string that contains sequences for the Terminal with which they
were created.

Where sequence move_right(n) is detected, it is replaced with n * u’ ’, and where
move_left() or \b is detected, those last-most characters are destroyed.

All other sequences are simply removed. An example,

>>> from blessed import Terminal
>>> from blessed.sequences import Sequence
>>> term = Terminal()
>>> Sequence(term.clear + term.red(u'test')).strip_seqs()
u'test'

padd()→ unicode
Make non-destructive space or backspace into destructive ones.

Where sequence move_right(n) is detected, it is replaced with n * u’ ’. Where sequence
move_left(n) or \b is detected, those last-most characters are destroyed.

10 Chapter 2. API Documentation

Python Module Index

b
blessed.formatters, 6
blessed.keyboard, 7
blessed.sequences, 8
blessed.terminal, 3

11

Blessed Documentation, Release 1.9.4

12 Python Module Index

Index

B
blessed.formatters (module), 6
blessed.keyboard (module), 7
blessed.sequences (module), 8
blessed.terminal (module), 3

C
cbreak() (blessed.terminal.Terminal method), 5
center() (blessed.sequences.Sequence method), 9
center() (blessed.terminal.Terminal method), 4
code (blessed.keyboard.Keystroke attribute), 8
color (blessed.terminal.Terminal attribute), 4
COLORS (in module blessed.formatters), 6
COMPOUNDABLES (in module blessed.formatters), 6

D
does_styling (blessed.terminal.Terminal attribute), 3

F
FormattingString (class in blessed.formatters), 7
fullscreen() (blessed.terminal.Terminal method), 4

G
get_keyboard_codes() (in module blessed.keyboard), 8
get_keyboard_sequences() (in module blessed.keyboard),

8
get_proxy_string() (in module blessed.formatters), 7
getch() (blessed.terminal.Terminal method), 5

H
height (blessed.terminal.Terminal attribute), 3
hidden_cursor() (blessed.terminal.Terminal method), 4

I
init_sequence_patterns() (in module blessed.sequences),

8
inkey() (blessed.terminal.Terminal method), 6
is_a_tty (blessed.terminal.Terminal attribute), 3
is_sequence (blessed.keyboard.Keystroke attribute), 8

K
kbhit() (blessed.terminal.Terminal method), 5
keypad() (blessed.terminal.Terminal method), 5
Keystroke (class in blessed.keyboard), 7
kind (blessed.terminal.Terminal attribute), 3

L
length() (blessed.sequences.Sequence method), 9
length() (blessed.terminal.Terminal method), 4
ljust() (blessed.sequences.Sequence method), 9
ljust() (blessed.terminal.Terminal method), 4
location() (blessed.terminal.Terminal method), 3
lstrip() (blessed.sequences.Sequence method), 10
lstrip() (blessed.terminal.Terminal method), 5

N
name (blessed.keyboard.Keystroke attribute), 8
normal (blessed.terminal.Terminal attribute), 4
NullCallableString (class in blessed.formatters), 7
number_of_colors (blessed.terminal.Terminal attribute),

4

O
on_color (blessed.terminal.Terminal attribute), 4

P
padd() (blessed.sequences.Sequence method), 10
ParameterizingProxyString (class in blessed.formatters),

6
ParameterizingString (class in blessed.formatters), 6

R
raw() (blessed.terminal.Terminal method), 5
resolve_attribute() (in module blessed.formatters), 7
resolve_capability() (in module blessed.formatters), 7
resolve_color() (in module blessed.formatters), 7
rjust() (blessed.sequences.Sequence method), 9
rjust() (blessed.terminal.Terminal method), 4
rstrip() (blessed.sequences.Sequence method), 10
rstrip() (blessed.terminal.Terminal method), 5

13

Blessed Documentation, Release 1.9.4

S
Sequence (class in blessed.sequences), 9
SequenceTextWrapper (class in blessed.sequences), 9
split_compound() (in module blessed.formatters), 7
strip() (blessed.sequences.Sequence method), 10
strip() (blessed.terminal.Terminal method), 4
strip_seqs() (blessed.sequences.Sequence method), 10
strip_seqs() (blessed.terminal.Terminal method), 5

T
Terminal (class in blessed.terminal), 3

W
width (blessed.terminal.Terminal attribute), 3
WINSZ (class in blessed.terminal), 6
wrap() (blessed.terminal.Terminal method), 5
ws_col (blessed.terminal.WINSZ attribute), 6
ws_row (blessed.terminal.WINSZ attribute), 6
ws_xpixel (blessed.terminal.WINSZ attribute), 6
ws_ypixel (blessed.terminal.WINSZ attribute), 6

14 Index

	Read The Readme First
	API Documentation
	terminal module (primary)
	formatters module
	keyboard module
	sequences module

	Python Module Index

