Blessed Documentation
Release 1.18.0

Erik Rose, Jeff Quast, Avram Lubkin

Mar 06, 2021

CONTENTS

Introduction

1.1 Examples o oo e e e e e e e e e e
1.2 Requirements it i e e e e e e e e e e e e e e e e e e e
1.3 Brief OVerview o e e e e e e e e e e e e e
1.4 Before And After e
Terminal

2.1 Capabilities e e e
2.2 Compound Formatting 0 o i e e e e e e e e e e
2.3 Clearing The Screen 0 i i e e e e e e e e e e e
2.4 Hyperlinks o L e e e e e
2.5 Styles . .o e e e e e e e
2.6 Full-Screen Mode L e e e e e e e e
2.7 PIPe SaVVY . o o e e e e e e e e e e e e e e e e
Colors

3.1 24-DitColors . . . v e e e e e e e e e e e e e e e e e
32 256 C0l0rs ... e e e
33 16 C0l0rs . . . o e e e
34 MONOChIOme o o o it e e e e e e e e e e e e e e e
Keyboard

A1 A0KEY() « o e e e e e e
42 Keycodes o e e e e e
43 deleteo e e e e
4.4 AlUmetao e e e e
Location

5.1 Example . . . oL e e e e
5.2 Context Manager L e e e e e e e e e e e
5.3 Finding The Cursor. o 0 i e e e e e e e e e e e e e e e e
Measuring

6.1 ReSIZING e e e e e e e
Examples

Tl DOUNCEDY -« o v v o e
T2 CIMLPY o v v o e
7.3 detect-multibyte.py o e e e e e e e e e e e e
T4 editOrPY . o o v e e e e e e e e e e e e e e
7.5 KeyMAtliX.PY « o v v v v e

AN L W W

O O O 0 0 0 0

29
29
30
33
33

35
36
36
37

39
39

T ON_TESIZEPY '« v v v v v e
TT 0 PlasmaPy .« . . v v o e
7.8 Progress_barpPy . . . v v o e
7.9 TESIZE.PY . . o o e e e e e e e e
TAO PrintPy . . o o e e e e e e
TAL WOIMIS.PY -+« v v v e
712 x11_colorpicker.py v v o o e e e e e e e e e e e e e
API Documentation

8.1 COlOLPY . . o o v e e e e
8.2 COlOTSPACE.PY » « v v v o e
8.3 formatters.py o o e e e e e e e e e e e e e e
8.4 keyboard.py L e e
8.5 SEQUENCES.PY -« « v v v e
8.6 terminal.py L e e e e e e
Project

0.1 Fork. e
0.2 LICENSE . . . v v i it e e e e
9.3 Running Tests o ot e e e e e e e e e e e
9.4 Further Reading L e e e e
9.5 Themisnomer of ANSI e

10 Version History

11 Indexes

Python Module Index

Index

45
45
47
48
52
54
57

67
67
67
67
68
69

71

77

79

81

Blessed Documentation, Release 1.18.0

CONTENTS 1

https://pypi.org/project/blessed/
https://codecov.io/gh/jquast/blessed/

Blessed Documentation, Release 1.18.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Blessed is an easy, practical library for making terminal apps, by providing an elegant, well-documented interface to
Colors, Keyboard input, and screen position and Location capabilities.

from blessed import

print 2
print

with

print 2 repr

It’s meant to be fun and easy, to do basic terminal graphics and styling with Python using blessed. Terminal is the only
class you need to import and the only object you should need for Terminal capabilities.

Whether you want to improve CLI apps with colors, or make fullscreen applications or games, blessed should help
get you started quickly. Your users will love it because it works on Windows, Mac, and Linux, and you will love it
because it has plenty of documentation and examples!

Full documentation at https://blessed.readthedocs.io/en/latest/

1.1 Examples

Fig. 1: x11-colorpicker.py, bounce.py, worms.py, and plasma.py, from our repository.

Exemplary 3rd-party examples which use blessed,

https://blessed.readthedocs.io/en/stable/colors.html
https://blessed.readthedocs.io/en/stable/keyboard.html
https://blessed.readthedocs.io/en/stable/location.html
https://blessed.readthedocs.io/en/stable/terminal.html
https://blessed.readthedocs.io/en/latest/
https://blessed.readthedocs.io/en/stable/examples.html#x11-colorpicker-py
https://blessed.readthedocs.io/en/stable/examples.html#bounce-py
https://blessed.readthedocs.io/en/stable/examples.html#worms-py
https://blessed.readthedocs.io/en/stable/examples.html#plasma-py

Blessed Documentation, Release 1.18.0

[disassembly] - [regs:general]

ferior_linux"

ferior_linux"

Fig. 2: Voltron is an extensible debugger UI toolkit written in Python

Fig. 3: cursewords is “graphical” command line program for solving crossword puzzles in the terminal.

Fig. 4: GitHeat builds an interactive heatmap of git history.

Fig. 5: Dashing is a library to quickly create terminal-based dashboards.

Fig. 6: Enlighten is a console progress bar library that allows simultaneous output without redirection.

Fig. 7: macht is a clone of the (briefly popular) puzzle game, 2048.

4 Chapter 1. Introduction

https://github.com/snare/voltron
https://github.com/thisisparker/cursewords
https://github.com/AmmsA/Githeat
https://github.com/FedericoCeratto/dashing
https://github.com/Rockhopper-Technologies/enlighten
https://github.com/rolfmorel/macht

Blessed Documentation, Release 1.18.0

1.2

Requirements

Blessed works with Windows, Mac, Linux, and BSD’s, on Python 2.7, 3.4, 3.5, 3.6, 3.7, and 3.8.

1.3

Brief Overview

Blessed is more than just a Python wrapper around curses:

Styles, Colors, and maybe a little positioning without necessarily clearing the whole screen first.
Works great with Python’s new f-strings or any other kind of string formatting.

Provides up-to-the-moment Location and terminal height and width, so you can respond to terminal size
changes.

Avoids making a mess if the output gets piped to a non-terminal, you can output sequences to any file-like object
such as StringlO, files, pipes or sockets.

Uses terminfo(5) so it works with any terminal type and capability: No more C-like calls to tigetstr and tparm.

Non-obtrusive calls to only the capabilities database ensures that you are free to mix and match with calls to any
other curses application code or library you like.

Provides context managers Terminal.fullscreen() and Terminal.hidden_cursor() to safely express terminal
modes, curses development will no longer fudge up your shell.

Act intelligently when somebody redirects your output to a file, omitting all of the special sequences colors, but
still containing all of the text.

Blessed is a fork of blessings, which does all of the same above with the same API, as well as following enhancements:

Windows support, new since Dec. 2019!

Dead-simple keyboard handling: safely decoding unicode input in your system’s preferred locale and supports
application/arrow keys.

24-bit color support, using Terminal.color_rgb() and Terminal.on_color_rgb() and all X11 Colors by name, and
not by number.

Determine cursor location using Terminal.get_location(), enter key-at-a-time input mode using Termi-
nal.cbreak() or Terminal.raw() context managers, and read timed key presses using Terminal.inkey().

Allows the printable length of strings that contain sequences to be determined by Terminal.length(), support-
ing additional methods Terminal.wrap() and Terminal.center(), terminal-aware variants of the built-in function
textwrap.wrap() and method str.center(), respectively.

Allows sequences to be removed from strings that contain them, using Terminal.strip_seqs() or sequences and
whitespace using Terminal.strip().

1.2. Requirements 5

https://docs.python.org/3/library/curses.html
https://blessed.readthedocs.io/en/stable/terminal.html#styles
https://blessed.readthedocs.io/en/stable/colors.html
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://blessed.readthedocs.io/en/stable/location.html
https://invisible-island.net/ncurses/man/terminfo.5.html
http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man3/tigetstr.3
http://man.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man3/tparm.3
https://blessed.readthedocs.io/en/latest/api/terminal.html#blessed.terminal.Terminal.fullscreen
https://blessed.readthedocs.io/en/latest/api/terminal.html#blessed.terminal.Terminal.hidden_cursor
https://github.com/erikrose/blessings
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.color_rgb
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.on_color_rgb
https://blessed.readthedocs.io/en/stable/colors.html
https://blessed.readthedocs.io/en/latest/location.html#finding-the-cursor
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.cbreak
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.cbreak
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.raw
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.inkey
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.length
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.wrap
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.center
https://docs.python.org/3/library/textwrap.html#textwrap.wrap
https://docs.python.org/3/library/stdtypes.html#str.center
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.strip_seqs
https://blessed.readthedocs.io/en/stable/api/terminal.html#blessed.terminal.Terminal.strip

Blessed Documentation, Release 1.18.0

1.4 Before And After

With the built-in curses module, this is how you would typically print some underlined text at the bottom of the screen:

from curses import
from fcntl import
from os import
import struct
import sys

from termios import

If we want to tolerate having our output piped to other commands or
files without crashing, we need to do all this branching:
if hasattr 'fileno') and

Tso!

'cup'

'rc'

'smul'
'sgr0'

else

Save cursor position.

print
if
tigetnum('lines') doesn't always update promptly, hence this:
"hhhh' 0 "\000" 8 0
Move cursor to bottom.
print 1, 0
print ('This is {under}underlined{normal}!"

Restore cursor position.
print

The same program with Blessed is simply:

from blessed import

with 0 1
print ('This is ' 'underlined’ e n

6 Chapter 1. Introduction

https://docs.python.org/3/library/curses.html

CHAPTER
TWO

TERMINAL

Blessed provides just one top-level object: Terminal. Instantiating a Terminal figures out whether you’re on a
terminal at all and, if so, does any necessary setup:

blessed

This is the only object, named term here, that you should need from blessed, for all of the remaining examples in our
documentation.

You can proceed to ask it all sorts of things about the terminal, such as its size:

Support for Colors:

And create printable strings containing sequences for Colors:

When printed, these codes make your terminal go to work:

print

And thanks to f-strings since python 3.6, it’s very easy to mix attributes and strings together:

print

https://en.wikipedia.org/wiki/ANSI_escape_code#CSI_sequences
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

Blessed Documentation, Release 1.18.0

2.1 Capabilities

Any capability in the terminfo(5) manual, under column Cap-name can be an attribute of the Terminal class, such as
‘smul” for ‘begin underline mode’.

There are a lot of interesting capabilities in the terminfo(5) manual page, but many of these will return an empty string,
as they are not supported by your terminal. They can still be used, but have no effect. For example, b1 ink only works
on a few terminals, does yours?

’ print

2.2 Compound Formatting

If you want to do lots of crazy formatting all at once, you can just mash it all together:

’ print

This compound notation comes in handy for users & configuration to customize your app, too!

2.3 Clearing The Screen

Blessed provides syntactic sugar over some screen-clearing capabilities:
clear Clear the whole screen.

clear_eol Clear to the end of the line.

clear_bol Clear backward to the beginning of the line.

clear_ eos Clear to the end of screen.

Suggest to always combine home and clear, and, in almost all emulators, clearing the screen after setting the
background color will repaint the background of the screen:

’ print

2.4 Hyperlinks

Maybe you haven’t noticed, because it’s a recent addition to terminal emulators, is that they can now support hyper-
links, like to HTML, or even £ile:// URLs, which allows creating clickable links of text.

print

Hover your cursor over documentat ion, and it should highlight as a clickable URL.

8 Chapter 2. Terminal

http://linux.die.net/man/5/terminfo
http://linux.die.net/man/5/terminfo

Blessed Documentation, Release 1.18.0

2.5 Styles

In addition to Colors, blessed also supports the limited amount of styles that terminals can do. These are:
bold Turn on ‘extra bright’ mode.

reverse Switch fore and background attributes.

normal Reset attributes to default.

underline Enable underline mode.

no_underline Disable underline mode.

Note: While the inverse of underline is no_underline, the only way to turn off bold or reverse is normal, which also
cancels any custom colors.

2.6 Full-Screen Mode

If you’ve ever noticed how a program like vim(1) restores you to your unix shell history after exiting, it’s actually
a pretty basic trick that all terminal emulators support, that blessed provides using the fullscreen () context
manager over these two basic capabilities:

enter_fullscreen Switch to alternate screen, previous screen is stored by terminal driver.

exit_fullscreen Switch back to standard screen, restoring the same terminal screen.

with
print 2

2.7 Pipe Savvy

If your program isn’t attached to a terminal, such as piped to a program like less(1) or redirected to a file, all the
capability attributes on Terminal will return empty strings for any Colors, Location, or other sequences. You’ll get
a nice-looking file without any formatting codes gumming up the works.

If you want to override this, such as when piping output to less -R, pass argument value True to the
force_styling parameter.

In any case, there is a does_ sty ling attribute that lets you see whether the terminal attached to the output stream
is capable of formatting. If it is False, you may refrain from drawing progress bars and other frippery and just stick to
content:

if
with 0 1
print
print

2.5. Styles 9

http://linux.die.net/man/1/vim
http://linux.die.net/man/1/less

Blessed Documentation, Release 1.18.0

10 Chapter 2. Terminal

CHAPTER
THREE

COLORS

Doing colors with blessed is easy, pick a color name from the All Terminal colors, by name below, any of these named
are also attributes of the Terminal!

These attributes can be printed directly, causing the terminal to switch into the given color. Or, as a callable, which
terminates the string with the normal attribute. The following three statements are equivalent:

print
print
print

To use a background color, prefix any color with on_:

’ print

And combine two colors using “_on_", as in “foreground_on_background”:

’ print

3.1 24-bit Colors

Most Terminal emulators, even Windows, has supported 24-bit colors since roughly 2016. To test or force-set whether
the terminal emulator supports 24-bit colors, check or set the terminal attribute number_of_colors ():

print 1 24

Even if the terminal only supports 256, or worse, 16 colors, the nearest color supported by the terminal is automati-
cally mapped:

11

Blessed Documentation, Release 1.18.0

And finally, the direct (r, g, b) values of 0-255 can be used for color_rgb () and on_color_rgb () for
foreground and background colors, to access each and every color!

Table 1: All Terminal colors, by name

Name Image R G B H S \

red B | 000% | 00% | 00% | 00% | 100.0% | 100.0%
red2 B | 0330 [00% | 00% | 00% | 100.0% | 93.3%
red3 B 049 | 00% | 00% | 00% | 100.0% | 80.4%
Snow 100.0% | 98.0% | 98.0% | 0.0% | 2.0% | 100.0%
Snow?2 933% | 914% | 914% | 00% | 21% | 93.3%
snow3 80.4% | 78.8% | 788% | 0.0% | 20% | 80.4%
snowd D [s459% | 537% | 537% | 00% | 14% | 54.5%
brown N 7% | i65% | 165% | 00% | 745% | 64.7%
brownl B | 1000% | 25.1% | 25.1% | 00% | 749% | 100.0%
brown?2 BN | 0339 | 23.0% | 23.1% | 00% | 752% | 93.3%
brown3 BN | s04% | 200% | 200% | 00% | 75.1% | 80.4%
brown4 N 5.5 | 37% | 137% | 00% | 748% | 54.5%
darkred B .50 (007 | 00% | 00% | 100.0% | 54.5%
indianred I [804% |36.1% | 36.1% | 00% | 55.1% | 80.4%
indianred1 DT | 1000% | 41.6% | 41.6% | 00% | 584% | 100.0%
indianred2 D | 033% | 388% | 388% | 00% | 584% | 93.3%
indianred3 B [804% | 333% | 333% | 00% | 58.5% | 80.4%
indianred4 N o5 | 27% | 27% | 00% | 583% | 54.5%
firebrick BN | o050 | 133% | 133% | 00% | 809% | 69.8%
firebrick B | 1000% | 188% | 18.8% | 00% | 81.2% | 100.0%
firebrick2 BN | 0339 | 173% | 173% | 00% | 815% | 93.3%
firebrick3 N 049 | 149% | 149% | 00% | 81.5% | 80.4%
firebrickd N 5.5 | 029 | 102% | 00% | 813% | 54.5%
webmaroon B 5000 [00% | 00% | 00% | 100.0% | 50.2%
rosybrown T [537% | 56.1% | 56.1% | 00% | 23.9% | 73.7%
rosybrownl 100.0% | 757% | 75.7% | 00% | 243% | 100.0%
rosybrown?2 933% | 70.6% | 70.6% | 00% | 244% | 93.3%
rosybrown3 80.4% | 60.8% | 60.8% | 0.0% | 244% | 80.4%
rosybrownd BN | 5459 |412% | 412% | 00% | 245% | 54.5%
lightcoral 94.1% | 502% | 502% | 00% | 467% | 94.1%
salmon 98.0% | 50.2% | 447% | 1.7% | 544% | 98.0%
mistyrose 100.0% | 89.4% 88.2% 1.7% 11.8% 100.0%
mistyrose2 933% | 83.5% | 824% | 18% | 11.8% | 93.3%
mistyrose3 80.4% | 71.8% | 71.0% | 14% | 11.7% | 80.4%
corall D | 100.0% | 447% | 337% | 28% | 66.3% | 100.0%

continues on next page

12 Chapter 3. Colors

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \Y
coral2 D [033% | 416% | 314% | 27% | 664% | 93.3%
coral3 B [804% |357% | 27.1% | 27% | 663% | 80.4%
coral4 N 5050 | 243% | 184% | 27% | 662% | 54.5%
tomato D | 100.0% | 388% | 27.8% | 25% | 722% | 100.0%
tomato2 Y | 033% | 36.1% | 259% | 25% | 723% | 93.3%
tomato3 BN | 804% | 310% | 224% | 25% | 722% | 80.4%
tomatos N o5 | 2129 | 149% | 26% | 727% | 54.5%
mistyrosed D | 5459 | 490% | 482% | 2.1% | 11.5% | 54.5%
salmon1 100.0% | 549% | 412% | 3.9% | 58.8% | 100.0%
salmon? T [933% | 510% | 384% | 3.8% | 588% | 93.3%
salmon3 D [804% | 439% | 329% | 39% | 59.0% | 80.4%
salmon4 BN | 5059 | 208% | 224% | 39% | 59.0% | 54.5%
coral T [1000% | 498% | 314% | 45% | 68.6% | 100.0%
orangered B | 1000% | 27.1% | 00% | 45% | 100.0% | 100.0%
orangered? BN | 033% | 25.0% | 00% | 45% | 100.0% | 93.3%
orangered3 BN | s04% |216% | 00% | 45% | 100.0% | 80.4%
orangered4 N 5.5 | 45% | 00% | 44% | 100.0% | 54.5%
darksalmon 91.4% 58.8% 47.8% 4.2% 47.6% 91.4%
lightsalmon 100.0% | 62.7% | 478% | 48% | 522% | 100.0%
lightsalmon?2 033% | 584% | 447% | 47% | 52.1% | 93.3%
lightsalmon3 T [804% | 506% | 384% | 48% | 522% | 80.4%
lightsalmon4 BN 5059 |341% | 259% | 48% | 52.5% | 54.5%
sienna BN 6279 | 322% | 176% | 54% | 71.9% | 62.7%
siennal T [1000% | 510% | 278% | 53% | 722% | 100.0%
sienna2 T | 933% | 475% | 259% | 53% | 723% | 93.3%
sienna3 D | 804% | 408% | 224% | 53% | 722% | 80.4%
siennad N | sisq | 278% | 149% | 54% | 727% | 54.5%
scashell 100.0% | 96.1% | 933% | 69% | 67% | 100.0%
chocolate D | 824% |412% | 118% | 69% | 85.7% | 82.4%
chocolatel T | 1000% | 498% | 14.1% | 69% | 85.9% | 100.0%
chocolate? D | 033% | 463% | 129% | 69% | 86.1% | 93.3%
chocolate3 I | 804% | 400% | 114% | 69% | 85.9% | 80.4%
chocolated N sis0 | 27.0% | 75% | 69% | 863% | 54.5%
scashell2 933% | 89.8% | 87.1% | 73% | 6.7% | 93.3%
scashell3 80.4% | 77.3% | 749% | 7.1% | 6.8% | 80.4%
scashell D | s459% | 525% | 51.0% | 74% | 65% | 54.5%
peachpuff 100.0% | 855% | 725% | 79% | 27.5% | 100.0%
peachpuff2 933% | 79.6% | 67.8% | 7.7% | 27.3% | 93.3%

continues on next page

3.1. 24-bit Colors

13

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \
peachpuff3 80.4% | 68.6% | 584% | 7.7% | 27.3% 80.4%
peachpuff4 _ 54.5% 46.7% 39.6% 7.9% 27.3% 54.5%
sandybrown 95.7% 64.3% 37.6% 7.7% 60.7% 95.7%
tanl 100.0% | 64.7% 31.0% 8.1% 69.0% 100.0%
tan2 93.3% 60.4% 28.6% 8.2% 69.3% 93.3%
tan4 _ 54.5% 35.3% 16.9% 8.2% 69.1% 54.5%
peru _ 80.4% 52.2% 24.7% 8.2% 69.3% 80.4%
linen 98.0% 94.1% 90.2% 8.3% 8.0% 98.0%
bisque3 80.4% 71.8% 62.0% 8.9% 22.9% 80.4%
darkorangel _ 100.0% | 49.8% 0.0% 8.3% 100.0% | 100.0%
darkorange?2 _ 93.3% 46.3% 0.0% 8.3% 100.0% | 93.3%
darkorange3 _ 80.4% 40.0% 0.0% 8.3% 100.0% | 80.4%
darkorange4 _ 54.5% 27.1% 0.0% 8.3% 100.0% | 54.5%
tan 82.4% 70.6% 54.9% 9.5% 33.3% 82.4%
bisque 100.0% | 89.4% 76.9% 9.0% 23.1% 100.0%
bisque2 93.3% 83.5% 71.8% 9.1% 23.1% 93.3%
bisque4 _ 54.5% 49.0% 42.0% 9.4% 23.0% 54.5%
burlywood 87.1% 72.2% 52.9% 9.4% 39.2% 87.1%
burlywood1 100.0% | 82.7% 60.8% 9.3% 39.2% 100.0%
burlywood2 93.3% 77.3% 56.9% 9.3% 39.1% 93.3%
burlywood3 80.4% 66.7% 49.0% 9.4% 39.0% 80.4%
burlywood4 _ 54.5% 45.1% 33.3% 9.3% 38.8% 54.5%
darkorange 100.0% | 54.9% 0.0% 9.2% 100.0% | 100.0%
navajowhite 100.0% | 87.1% 67.8% 10.0% | 32.2% 100.0%
navajowhite2 93.3% 81.2% 63.1% 10.0% | 32.4% 93.3%
antiquewhite 98.0% 92.2% 84.3% 9.5% 14.0% 98.0%
antiquewhitel 100.0% | 93.7% 85.9% 9.3% 14.1% 100.0%
antiquewhite2 93.3% 87.5% 80.0% 9.3% 14.3% 93.3%
antiquewhite3 80.4% 75.3% 69.0% 9.2% 14.1% 80.4%
antiquewhite4 _ 54.5% 51.4% 47.1% 9.6% 13.7% 54.5%
wheat 96.1% 87.1% 70.2% 10.9% | 26.9% 96.1%
wheat1 100.0% | 90.6% 72.9% 10.9% | 27.1% 100.0%
wheat2 93.3% 84.7% 68.2% 10.9% | 26.9% 93.3%
wheat3 80.4% 72.9% 58.8% 10.9% | 26.8% 80.4%
wheatd D | 545% | 494% | 40.0% | 10.8% | 26.6% | 54.5%
orange 100.0% | 64.7% 0.0% 10.8% | 100.0% | 100.0%
orange2 93.3% 60.4% 0.0% 10.8% | 100.0% | 93.3%
orange3 _ 80.4% 52.2% 0.0% 10.8% | 100.0% | 80.4%

continues on next page

14

Chapter 3. Colors

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \
orange4 BN | 5is9 | 353% | 00% | 108% | 100.0% | 54.5%
oldlace 992% | 96.1% | 90.2% | 10.9% | 9.1% | 99.2%
moccasin 100.0% | 89.4% | 71.0% | 10.6% | 29.0% | 100.0%
papayawhip 100.0% | 93.7% 83.5% 103% | 16.5% 100.0%
navajowhite3 804% | 702% | 54.5% | 10.1% | 32.2% | 80.4%
navajowhite4 B | 5459 | 475% | 369% | 10.0% | 32.4% | 54.5%
blanchedalmond 100.0% | 922% | 80.4% | 10.0% | 19.6% | 100.0%
goldenrod 855% | 647% | 12.5% | 11.9% | 853% | 85.5%
goldenrod| 100.0% | 757% | 145% | 11.9% | 85.5% | 100.0%
goldenrod2 933% | 70.6% | 133% | 11.9% | 85.7% | 93.3%
goldenrod3 80.4% | 60.8% | 11.4% | 11.9% | 85.9% | 80.4%
goldenrod4 BN | sis9 |412% | 78% | 11.9% | 85.6% | 54.5%
floralwhite 100.0% | 98.0% | 94.1% | 11.1% | 5.9% | 100.0%
darkgoldenrod I | 7209 | 525% | 43% | 11.8% | 940% | 72.2%
darkgoldenrod 100.0% | 725% | 5.9% | 11.8% | 94.1% | 100.0%
darkgoldenrod? 933% | 67.8% | 55% | 11.8% | 94.1% | 93.3%
darkgoldenrod3 T [804% | 584% | 47% | 11.8% | 94.1% | 80.4%
darkgoldenrods BN | 5is9 | 396% | 3.1% | 11.8% | 942% | 54.5%
cornsilk 100.0% | 97.3% | 863% | 133% | 13.7% | 100.0%
cornsilk2 933% | 91.0% | 80.4% | 13.6% | 13.9% | 93.3%
cornsilk3 80.4% | 784% | 69.4% | 137% | 13.7% | 80.4%
lightgoldenrod1 100.0% | 92.5% | 54.5% | 13.9% | 45.5% | 100.0%
lightgoldenrod2 933% | 863% | 51.0% | 13.9% | 454% | 93.3%
lightgoldenrod3 804% | 745% | 43.9% | 14.0% | 454% | 80.4%
gold 100.0% | 84.3% | 0.0% | 14.1% | 100.0% | 100.0%
gold2 933% | 788% | 0.0% | 14.1% | 100.0% | 93.3%
gold3 804% | 678% | 0.0% | 14.1% | 100.0% | 80.4%
gold4 BN | si59 |459% | 00% | 14.0% | 100.0% | 54.5%
cornsilké D | 545% | 533% | 47.1% | 14.0% | 13.7% | 54.5%
lemonchiffon2 933% | 91.4% | 749% | 149% | 197% | 93.3%
lightgoldenrod 933% | 86.7% | 51.0% | 14.0% | 454% | 93.3%
lightgoldenrod4 I | 5459 | 506% | 298% | 14.0% | 453% | 54.5%
khaki 04.1% | 90.2% | 549% | 15.0% | 41.7% | 94.1%
khakil 100.0% | 965% | 56.1% | 15.3% | 43.9% | 100.0%
khaki2 933% | 902% | 522% | 154% | 44.1% | 93.3%
khaki3 804% | 77.6% | 451% | 154% | 43.9% | 80.4%
khakid I | s459% | 525% | 306% | 153% | 43.9% | 54.5%
darkkhaki 741% | 718% | 42.0% | 154% | 43.4% | 74.1%

continues on next page

3.1. 24-bit Colors 15

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \
lemonchiffon 100.0% | 98.0% | 80.4% | 15.0% | 19.6% | 100.0%
lemonchiffon3 804% | 788% | 64.7% | 15.0% | 19.5% | 80.4%
lemonchiffond D [s459% | 537% | 43.9% | 154% | 194% | 54.5%
palegoldenrod 93.3% | 91.0% | 66.7% 152% | 28.6% | 93.3%
beige 96.1% | 96.1% | 86.3% | 16.7% | 102% | 96.1%
olive BN | 5029 |502% | 00% | 167% | 100.0% | 50.2%
ivory 100.0% | 100.0% | 94.1% | 167% | 59% | 100.0%
ivory2 933% | 933% | 87.8% | 16.7% | 5.9% | 93.3%
ivory3 80.4% | 804% | 757% | 16.7% | 5.9% | 80.4%
ivory4 D [s459% | 545% | 514% | 167% | 58% | 54.5%
yellow 100.0% | 100.0% | 0.0% | 16.7% | 100.0% | 100.0%
vellow?2 933% | 933% | 00% | 16.7% | 100.0% | 93.3%
yellow3 804% | 804% | 0.0% | 16.7% | 100.0% | 80.4%
yellowd B | 5459 |545% | 00% | 167% | 100.0% | 54.5%
lightyellow 100.0% | 100.0% | 87.8% | 16.7% | 12.2% | 100.0%
lightyellow2 933% | 933% | 82.0% | 16.7% | 122% | 93.3%
lightyellow3 804% | 804% | 70.6% | 16.7% | 122% | 80.4%
lightyellowd D [5459 | 545% | 47.8% | 167% | 122% | 54.5%
lightgoldenrodyellow 98.0% | 98.0% | 82.4% | 16.7% | 160% | 98.0%
olivedrab BN | 0% |557% | 139% | 221% | 754% | 55.7%
olivedrab1 753% | 100.0% | 24.3% | 22.1% | 75.7% | 100.0%
olivedrab2 702% | 933% | 227% | 22.1% | 75.6% | 93.3%
olivedrab3 604% | 80.4% | 19.6% | 22.2% | 75.6% | 80.4%
olivedrab4 BN | 4129 |545% | 133% | 221% | 755% | 54.5%
darkolivegreen BN | 53390 | 420% | 184% | 228% | 56.1% | 42.0%
darkolivegreen1 792% | 100.0% | 43.9% | 22.8% | 56.1% | 100.0%
darkolivegreen2 737% | 933% | 40.8% | 22.9% | 56.3% | 93.3%
darkolivegreen3 635% | 80.4% | 353% | 22.9% | 56.1% | 80.4%
darkolivegreen4 B | 4319 | 545% | 23.9% | 22.9% | 56.1% | 54.5%
greenyellow 67.8% | 100.0% | 184% | 23.2% | 81.6% | 100.0%
lawngreen 486% | 988% | 00% | 25.1% | 100.0% | 98.8%
chartreuse 49.8% 100.0% | 0.0% 25.0% | 100.0% | 100.0%
chartreuse2 46.3% 93.3% 0.0% 25.1% | 100.0% | 93.3%
chartreuse3 T [400% | 804% | 0.0% | 25.0% | 100.0% | 80.4%
chartreuscd BN 2709 | 545% | 00% | 25.1% | 100.0% | 54.5%
green T [00% | 100.0% | 0.0% | 333% | 100.0% | 100.0%
green? I [00% | 933% | 00% | 333% | 100.0% | 93.3%
green3 B [00% | 804% | 00% | 333% | 100.0% | 80.4%

continues on next page

16 Chapter 3. Colors

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \
greend BN 000 [545% | 00% | 333% | 100.0% | 54.5%
webgreen _ 0.0% 50.2% | 0.0% 33.3% | 100.0% | 50.2%
honeydew 94.1% | 100.0% | 94.1% | 33.3% | 5.9% 100.0%
honeydew?2 878% | 93.3% | 87.8% | 33.3% | 5.9% 93.3%
honeydew3 757% | 80.4% | 75.7% | 33.3% | 5.9% 80.4%
honeydew4 _ 51.4% | 545% | 51.4% | 333% | 5.8% 54.5%
darkgreen _ 0.0% 39.2% | 0.0% 33.3% | 100.0% | 39.2%
palegreen 59.6% | 98.4% | 59.6% | 333% | 39.4% | 98.4%
palegreenl 60.4% | 100.0% | 60.4% | 33.3% | 39.6% | 100.0%
palegreen3 48.6% | 804% | 48.6% | 33.3% | 39.5% | 80.4%
palegreend _ 329% | 54.5% | 32.9% | 33.3% | 39.6% | 54.5%
limegreen DT [196% | 804% | 19.6% | 333% | 75.6% | 80.4%
lightgreen 56.5% | 933% | 56.5% | 33.3% | 39.5% | 93.3%
forestgreen _ 133% | 545% | 133% | 333% | 75.5% | 54.5%
darkseagreen 56.1% | 73.7% | 56.1% 333% | 23.9% | 73.7%
darkseagreenl 75.7% 100.0% | 75.7% | 33.3% | 24.3% 100.0%
darkseagreen2 70.6% | 93.3% | 70.6% | 333% | 24.4% | 93.3%
darkseagreen3 60.8% 80.4% | 60.8% 33.3% | 24.4% 80.4%
darkseagreen4 _ 412% | 545% | 41.2% | 33.3% | 24.5% | 54.5%
seagreen _ 18.0% | 545% | 34.1% | 40.7% | 66.9% | 54.5%
seagreenl 329% | 100.0% | 62.4% | 40.6% | 67.1% | 100.0%
seagreen2 30.6% | 93.3% | 58.0% | 40.6% | 67.2% | 93.3%
seagreen3 _ 263% | 80.4% | 50.2% | 40.7% | 67.3% | 80.4%
mediumseagreen _ 23.5% | 702% | 44.3% | 40.8% | 66.5% | 70.2%
mintcream 96.1% | 100.0% | 98.0% | 41.7% | 3.9% 100.0%
springgreen 0.0% 100.0% | 49.8% | 41.6% | 100.0% | 100.0%
springgreen?2 _ 0.0% 933% | 46.3% | 41.6% | 100.0% | 93.3%
springgreen3 _ 0.0% 80.4% | 40.0% | 41.6% | 100.0% | 80.4%
springgreend BN 000 [545% | 27.1% | 41.6% | 100.0% | 54.5%
mediumspringgreen 0.0% 98.0% | 60.4% | 43.6% | 100.0% | 98.0%
aquamarine 49.8% | 100.0% | 83.1% | 44.4% | 50.2% | 100.0%
aquamarine? 463% | 933% | 77.6% | 44.4% | 50.4% | 93.3%
aquamarine3 40.0% | 80.4% | 66.7% | 44.3% | 50.2% 80.4%
aquamarine4 _ 27.1% | 545% | 455% | 44.5% | 50.4% | 54.5%
turquoise 25.1% 87.8% 81.6% | 48.3% | 71.4% 87.8%
lightseagreen _ 125% | 698% | 66.7% | 49.1% | 82.0% | 69.8%
mediumturquoise 28.2% 82.0% 80.0% | 49.4% | 65.6% 82.0%
teal _ 0.0% 50.2% | 50.2% | 50.0% | 100.0% | 50.2%

continues on next page

3.1. 24-bit Colors

17

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \

aqua 0.0% | 100.0% | 100.0% | 50.0% | 100.0% | 100.0%
cyan2 00% | 933% | 933% | 50.0% | 100.0% | 93.3%
cyan3 T [00% | 804% | 804% | 50.0% | 100.0% | 80.4%
cyand BN 007 | 545% | 545% | 50.0% | 100.0% | 54.5%
azure 94.1% | 100.0% | 100.0% | 50.0% | 5.9% | 100.0%
azure? 87.8% | 933% | 93.3% | 50.0% | 59% | 93.3%
azure3 757% | 80.4% | 80.4% | 50.0% | 5.9% | 80.4%
azured D [514% | 545% | 545% | 50.0% | 58% | 54.5%
cadetblue T [373% | 620% | 627% | 50.5% | 40.6% | 62.7%
lightcyan 87.8% | 100.0% | 100.0% | 50.0% | 122% | 100.0%
lightcyan2 82.0% | 933% | 93.3% | 50.0% | 122% | 93.3%
lightcyan3 70.6% | 80.4% | 80.4% | 50.0% | 12.2% | 80.4%
lightcyand D [478% | 545% | 545% | 50.0% | 122% | 54.5%
turquoisel 0.0% | 96.1% | 100.0% | 50.7% | 100.0% | 100.0%
turquoise2 0.0% | 89.8% | 93.3% | 50.6% | 100.0% | 93.3%
furquoise3 T [00% | 773% | 804% | 50.7% | 100.0% | 80.4%
turquoised BN (009 | 525% | 545% | 50.6% | 100.0% | 54.5%
darkslategray N | sio | 310% | 31.0% | 50.0% | 405% | 31.0%
darkslategray 1 592% | 100.0% | 100.0% | 50.0% | 40.8% | 100.0%
darkslategray? 553% | 933% | 93.3% | 50.0% | 40.8% | 93.3%
darkslategray3 475% | 804% | 80.4% | 50.0% | 41.0% | 80.4%
darkslategray4 B [300% | 545% | 545% | 50.0% | 41.0% | 54.5%
darkturquoise T [00% | 808% | 82.0% | 50.2% | 100.0% | 82.0%
paleturquoise 68.6% | 93.3% | 933% | 50.0% | 26.5% | 93.3%
paleturquoise1 733% | 100.0% | 100.0% | 50.0% | 26.7% | 100.0%
paleturquoise? 682% | 933% | 93.3% | 50.0% | 26.9% | 93.3%
paleturquoise3 58.8% 80.4% 80.4% | 50.0% | 26.8% 80.4%
paleturquoises D [400% | 545% | 545% | 50.0% | 26.6% | 54.5%
cadetbluel 59.6% | 96.1% | 100.0% | 51.6% | 40.4% | 100.0%
cadetblue? 557% | 89.8% | 933% | 51.6% | 40.3% | 93.3%
cadetblue3 478% | 773% | 804% | 51.6% | 40.5% | 80.4%
cadetblues BN | 3259 | 525% | 545% | 51.5% | 403% | 54.5%
powderblue 69.0% | 87.8% | 90.2% | 51.9% | 23.5% | 90.2%
lightblucs B | 408% | 514% | 545% | 53.8% | 252% | 54.5%
skyblue 529% | 80.8% | 92.2% | 54.8% | 42.6% | 92.2%
lightblue 67.8% | 84.7% | 902% | 54.1% | 24.8% | 90.2%
lightbluel 749% | 93.7% | 100.0% | 54.2% | 25.1% | 100.0%
lightblue2 69.8% | 87.5% | 933% | 542% | 252% | 93.3%

continues on next page

18 Chapter 3. Colors

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \Y
lightblue3 604% | 753% | 80.4% | 542% | 24.9% | 80.4%
deepskyblue T [00% | 749% | 100.0% | 54.2% | 100.0% | 100.0%
deepskyblue2 Y [00% | 698% | 933% | 54.2% | 100.0% | 93.3%
deepskyblue3 BN | 00% | 604% | 804% | 54.1% | 100.0% | 80.4%
deepskyblued BN | 009 | 408% | 545% | 542% | 100.0% | 54.5%
lightskyblue3 553% | 714% | 80.4% | 56.0% | 31.2% | 80.4%
skybluel 529% | 80.8% | 100.0% | 56.8% | 47.1% | 100.0%
skyblue2 494% | 753% | 933% | 56.8% | 47.1% | 93.3%
skyblue3 D [224% | 65.1% | 804% | 56.7% | 47.3% | 80.4%
skyblucd BN | 200% | 43.9% | 545% | 56.9% | 468% | 54.5%
lightskyblue 529% | 80.8% | 98.0% | 56.4% | 46.0% | 98.0%
lightskybluel 69.0% | 88.6% | 100.0% | 56.1% | 31.0% | 100.0%
lightskyblue2 643% | 827% | 933% | 56.1% | 31.1% | 93.3%
lightskyblues D [376% | 482% | 545% | 56.2% | 30.9% | 54.5%
aliceblue 94.1% | 97.3% | 100.0% | 57.8% | 59% | 100.0%
steelblue B [275% | 510% | 706% | 57.6% | 61.1% | 70.6%
steelbluel 38.8% | 722% | 1000% | 57.6% | 612% | 100.0%
steelblue2 T [361% | 675% | 933% | 57.5% | 61.3% | 93.3%
steelblue3 D [310% | 580% | 804% | 57.5% | 61.5% | 80.4%
steelblucs BN (0000 | 3920 | 545% | 57.6% | 612% | 54.5%
slategray I | 439% | 502% | 565% | 583% | 222% | 56.5%
slategray1 77.6% | 88.6% | 100.0% | 58.5% | 22.4% | 100.0%
slategray? 725% | 827% | 93.3% | 58.5% | 22.3% | 93.3%
slategray3 624% | 71.4% | 80.4% | 583% | 22.4% | 80.4%
slategray4 DN | 424% | 482% | 545% | 58.6% | 22.3% | 54.5%
dodgerblue I | 118% | 565% | 100.0% | 58.2% | 882% | 100.0%
dodgerblue2 B | 110% | 525% | 933% | 583% | 882% | 93.3%
dodgerblue3 BN (049 | 455% | 804% | 582% | 883% | 80.4%
dodgerblucs B (6500 | 306% | 545% | 583% | 88.5% | 54.5%
lightslategray D [467% | 533% | 60.0% | 583% | 222% | 60.0%
lightsteelblue 69.0% | 76.9% | 87.1% | 59.4% | 20.7% | 87.1%
lightsteelblue1 792% | 88.2% | 100.0% | 59.4% | 20.8% | 100.0%
lightsteelblue2 737% | 824% | 933% | 59.3% | 21.0% | 93.3%
lightsteelblue3 635% | 71.0% | 80.4% | 59.3% | 21.0% | 80.4%
lightsteelblue4 D | 4319 | 482% | 545% | 59.2% | 209% | 54.5%
cornflowerblue D [300% | 584% | 92.9% | 60.7% | 57.8% | 92.9%
royalblue BN | 0559 | 412% | 882% | 62.5% | 71.1% | 88.2%
royalbluel _ 282% | 46.3% 100.0% | 62.5% | 71.8% 100.0%

continues on next page

3.1. 24-bit Colors

19

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \
royalblue2 BN | 263% | 43.1% | 933% | 62.5% | 71.8% | 93.3%
royalblue3 BN | 7% |373% | 804% | 62.5% | 71.7% | 80.4%
royalblucs BN | 530 | 2509 | 545% | 62.5% | 71.9% | 54.5%
blue B o0 | 00% | 1000% | 66.7% | 100.0% | 100.0%
blue2 B 00 | 00% | 933% | 66.7% | 100.0% | 93.3%
blue3 B 00 | 00% | 804% | 66.7% | 100.0% | 80.4%
blucd B 00 | 00% | 545% | 66.7% | 100.0% | 54.5%
navy B o0 | 00% | 502% | 66.7% | 100.0% | 50.2%
lavender 902% | 902% | 98.0% | 66.7% | 8.0% | 98.0%
ghostwhite 973% | 97.3% | 100.0% | 66.7% | 27% | 100.0%
midnightblue N o0 | osu | 439% | 667% | 77.7% | 43.9%
slateblue BN | 4169 |353% | 804% | 69.0% | 56.1% | 80.4%
slatebluel D [5149 | 435% | 100.0% | 69.0% | 56.5% | 100.0%
slateblue3 BN | 4109 |349% | 804% | 69.0% | 56.6% | 80.4%
slateblucs BN 0750 | 235% | 545% | 69.0% | 56.8% | 54.5%
lightslateblue D [5189 | 43.9% | 100.0% | 69.0% | 56.1% | 100.0%
slatebluc? I | 478% | 404% | 933% | 69.0% | 56.7% | 93.3%
darkslateblue BN | 500 | 239% | 545% | 69.0% | 56.1% | 54.5%
mediumslateblue D | 4329 | 408% | 933% | 69.0% | 563% | 93.3%
mediumpurple D [576% | 43.9% | 85.9% | 72.1% | 48.9% | 85.9%
mediumpurplel T [67.1% | 510% | 100.0% | 72.1% | 49.0% | 100.0%
mediumpurple2 D [624% | 475% | 933% | 721% | 492% | 93.3%
mediumpurple3 I | 5379 | 408% | 804% | 72.1% | 493% | 80.4%
mediumpurple4 _ 36.5% | 27.8% | 54.5% | 72.1% | 489% | 54.5%
purplel BN | 608% | 188% | 100.0% | 753% | 81.2% | 100.0%
purple2 BN 5609 | 173% | 933% | 753% | 81.5% | 93.3%
purple3 N | 00% | 149% | 804% | 753% | 81.5% | 80.4%
purples BN | 330 | 029 | 545% | 754% | 813% | 54.5%
blueviolet BN 5519 | 169% | 88.6% | 753% | 81.0% | 88.6%
rebeccapurple _ 40.0% | 20.0% | 60.0% | 75.0% | 66.7% | 60.0%
indigo B | 0:% | 00% | 51.0% | 763% | 100.0% | 51.0%
purple N 6279 | 125% | 941% | 76.9% | 86.7% | 94.1%
darkorchid BN | c00% | 196% | 800% | 77.8% | 75.5% | 80.0%
darkorchid B | 740% | 243% | 100.0% | 77.8% | 75.7% | 100.0%
darkorchid2 BN | 608% | 227% | 933% | 77.8% | 75.6% | 93.3%
darkorchid3 BN | 604% | 196% | 804% | 77.8% | 75.6% | 80.4%
darkorchid4 N | 059 | 133% | 545% | 77.8% | 755% | 54.5%
darkviolet N 500 | 00% | 827% | 784% | 100.0% | 82.7%

continues on next page

20 Chapter 3. Colors

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \Y
mediumorchidl T [878% | 400% | 100.0% | 80.0% | 60.0% | 100.0%
mediumorchid? D [820% | 373% | 933% | 80.0% | 60.1% | 93.3%
mediumorchid3 B | 706% | 322% | 804% | 79.9% | 60.0% | 80.4%
mediumorchid4 BN | 4789 | 216% | 545% | 80.0% | 604% | 54.5%
mediumorchid Y | 7209 | 333% | 827% | 80.0% | 59.7% | 82.7%
plum 86.7% | 627% | 867% | 83.3% | 27.6% | 86.7%
pluml 100.0% | 733% | 100.0% | 83.3% | 26.7% | 100.0%
plum2 933% | 682% | 933% | 833% | 269% | 93.3%
plum3 80.4% | 58.8% | 80.4% | 833% | 26.8% | 80.4%
plumé BN [545% | 400% | 545% | 833% | 26.6% | 54.5%
orchid D [855% | 43.9% | 83.9% | 84.0% | 48.6% | 85.5%
orchid4 BN | 5059 | 278% | 53.7% | 83.8% | 48.9% | 54.5%
violet 933% | 51.0% | 933% | 833% | 454% | 93.3%
magenta? BN | 0339 | 00% | 933% | 833% | 100.0% | 93.3%
magenta3 BN 049 |00% | 804% | 833% | 100.0% | 80.4%
fuchsia BN | 1000% | 0.0% | 100.0% | 83.3% | 100.0% | 100.0%
thistle 84.7% | 749% | 847% | 833% | 11.6% | 84.7%
thistlel 100.0% | 882% | 100.0% | 83.3% | 11.8% | 100.0%
thistle2 933% | 824% | 933% | 833% | 11.8% | 93.3%
thistle3 80.4% | 71.0% | 80.4% | 833% | 11.7% | 80.4%
thistle4 D | 5459 | 482% | 545% | 833% | 11.5% | 54.5%
webpurple B 5000 | 00% | 502% | 833% | 100.0% | 50.2%
darkmagenta BN .50 | 00% | 545% | 833% | 100.0% | 54.5%
orchid1 100.0% | 51.4% | 98.0% | 84.0% | 48.6% | 100.0%
orchid2 933% | 478% | 91.4% | 84.1% | 48.7% | 93.3%
orchid3 D [804% | 412% | 78.8% | 84.0% | 48.8% | 80.4%
maroonl B | 100.0% | 204% | 702% | 89.6% | 79.6% | 100.0%
maroon2 B | 033% | 188% | 65.5% | 89.6% | 79.8% | 93.3%
maroon3 BN (5049 | 16.1% | 565% | 89.5% | 80.0% | 80.4%
maroond N 5050 | 1109 | 384% | 895% | 79.9% | 54.5%
violetred BN (5169 | 125% | 565% | 89.4% | 84.6% | 81.6%
mediumvioletred N | 509 | 82% | 522% | 89.5% | 89.4% | 78.0%
deeppink BN | 1000% | 7.8% | 57.6% | 91.0% | 922% | 100.0%
deeppink? N | 0339 | 7.1% | 537% | 91.0% | 924% | 93.3%
deeppink4 BN .50 300 | 314% | 91.0% | 928% | 54.5%
hotpink T [1000% | 412% | 706% | 91.7% | 58.8% | 100.0%
hotpink 100.0% | 43.1% | 70.6% | 92.0% | 56.9% | 100.0%
hotpink4 BN | 5is5% | 227% | 384% | 91.8% | 583% | 54.5%

continues on next page

3.1. 24-bit Colors 21

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \
deeppink3 BN 049 | 63% | 463% | 91.0% | 922% | 80.4%
hotpink2 T [033% | 416% | 655% | 92.3% | 55.5% | 93.3%
hotpink3 D [804% | 37.6% | 565% | 92.7% | 532% | 80.4%
violetred| I | 100.0% | 243% | 58.8% | 92.4% | 75.7% | 100.0%
violetred2 B [033% | 227% | 54.9% | 924% | 75.6% | 93.3%
violetred3 B [504% | 196% | 47.1% | 92.5% | 75.6% | 80.4%
violetreds I | 5is50 | 133% | 322% | 924% | 755% | 54.5%
maroon BN | co0% | 188% | 37.6% | 938% | 72.7% | 69.0%
lavenderblush4 DO [545% | 514% | 525% | 93.8% | 5.8% | 54.5%
lavenderblush 100.0% | 94.1% | 96.1% | 94.4% | 5.9% | 100.0%
lavenderblush2 933% | 87.8% | 89.8% | 94.0% | 5.9% | 93.3%
lavenderblush3 80.4% | 757% | 77.3% | 94.4% | 59% | 80.4%
palevioletred D [859% | 43.9% | 57.6% | 94.5% | 489% | 85.9%
palevioletred] 100.0% | 51.0% | 67.1% | 94.5% | 49.0% | 100.0%
palevioletred2 933% | 47.5% | 624% | 94.6% | 49.2% | 93.3%
palevioletred3 D [804% | 408% | 537% | 94.6% | 493% | 80.4%
palevioletred4 BN [5ss5% | 278% | 365% | 94.6% | 489% | 54.5%
pinkl 100.0% | 71.0% | 77.3% | 964% | 29.0% | 100.0%
pink2 933% | 663% | 722% | 964% | 29.0% | 93.3%
pink3 80.4% | 56.9% | 62.0% | 96.4% | 293% | 80.4%
pinkd BN | 5459 | 388% | 424% | 96.2% | 28.8% | 54.5%
crimson BN | 530 | 78% | 235% | 96.7% | 90.9% | 86.3%
pink 100.0% | 75.3% | 79.6% | 97.1% | 247% | 100.0%
lightpink 100.0% | 714% | 75.7% | 97.5% | 28.6% | 100.0%
lightpink1 100.0% | 682% | 725% | 97.7% | 31.8% | 100.0%
lightpink2 933% | 63.5% | 67.8% | 97.6% | 31.9% | 93.3%
lightpink3 80.4% | 54.9% | 584% | 97.7% | 31.7% | 80.4%
lightpink4 BN [5459 |373% | 396% | 97.7% | 31.7% | 54.5%
black B 00 [o00% | 00% |00% |00% |0.0%
grayl B > 2% | 12% | 00% | 00% | 12%
gray2 B >0 207 | 20% | 00% | 00% | 20%
gray3 B ;. (0 | 31% | 00% | 00% | 31%
grayd B 5000 [39% | 39% | 00% | 00% | 39%
grays B ;0 (5% 5% | 00% | 00% |5.1%
gray6 B 5o (sov | 59% | 00% | 00% | 5.9%
gray7 B (7% | 7% | 00% | 00% | 7.1%
gray8 N | co | 7s% | 7s8% | 00% | 00% | 7.8%
gray9 B 000 [o0% | 90% | 00% |00% |9.0%

continues on next page

22

Chapter 3. Colors

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \

oray10 B | 02 | 02% | 102% | 00% | 00% | 102%
orayll I | 0% | 10% | 110% | 00% | 00% | 11.0%
grayl2 N oo | 029 | 1229 | 00% | 00% | 122%
grayl3 B 00 |09 | 129% | 00% | 00% | 12.9%
grayl4 I | o0 | 4% | 141% | 00% | 00% | 14.1%
grayl5 B | oo | 499 | 149% | 00% | 00% | 14.9%
oray16 N | 6% | 61% | 161% | 00% | 00% | 16.1%
arayl7 BN | cou | 69% | 169% | 00% | 00% | 169%
gray18 BN | 5o | 180% | 180% | 00% | 00% | 18.0%
oray19 BN | s | 88% | 188% | 00% | 00% | 18.8%
aray20 B | o00% | 200% | 200% | 00% | 00% | 20.0%
gray21 B 000 229 [212% | 00% | 00% | 212%
oray22 I (200 | 220% | 220% | 00% | 00% | 22.0%
gray23 N ;o | 230% | 230% | 00% | 00% | 23.1%
gray24 BN | o0 | 239% | 239% | 00% | 00% | 23.9%
oray25 I | s % | 250% | 25.0% | 00% | 00% | 25.1%
aray26 BN | o500 | 259% | 259% | 00% | 00% | 259%
aray27 N 7% [270% | 271% | 00% | 00% | 27.1%
gray28 N | 075 | 278% | 278% | 00% | 00% | 27.8%
gray29 BN | 200% | 200% | 290% | 00% | 00% | 29.0%
aray30 BN 3029 | 302% | 302% | 00% | 00% | 30.2%
gray31 BN (0% |310% |310% | 00% |00% | 31.0%
gray32 N | 00 | 3229 | 322% | 00% | 00% | 322%
oray33 N | 500 | 329% | 329% | 00% | 00% | 32.9%
gray34 BN (1% | 341% | 341% | 00% | 00% | 34.1%
gray3s BN | 509 | 349% | 349% | 00% | 00% | 34.9%
oray36 BN [s61% |361% |361% | 00% | 00% | 36.1%
gray37 BN | 369% | 369% | 369% | 00% | 00% | 36.9%
gray38 BN [350% | 380% | 380% | 00% | 00% | 38.0%
oray39 N | 3s5% | 388% | 388% | 00% | 00% | 38.8%
aray40 B | 400% | 400% | 400% | 00% | 00% | 40.0%
dimgray N | 409 |412% | 412% | 00% | 00% | 41.2%
oray42 BN | 20% | 420% | 420% | 00% | 00% | 42.0%
aray43 BN | 509 | 43.0% |431% | 00% | 0.0% | 43.1%
grayd4 N | 309 | 439% | 43.9% | 00% | 00% | 43.9%
aray45 B [451% | 45.1% | 45.1% | 00% | 00% | 45.1%
aray46 D [450% | 459% | 459% | 00% | 00% | 45.9%
aray47 N [471% |47.1% | 47.1% | 00% | 00% | 47.1%

continues on next page

3.1. 24-bit Colors

23

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Image R G B H S \Y

oray48 D | 478% | 478% | 478% | 00% | 0.0% | 47.8%
oray49 I [400% | 490% | 490% | 00% | 00% | 49.0%
aray30 D [408% | 498% | 498% | 00% | 00% | 49.8%
webgray B | 5029 |502% | 502% | 00% | 00% | 50.2%
grays1 I [510% |510% | 51.0% | 00% | 00% | 51.0%
gray5?2 B | 5209 | 522% | 522% | 00% | 00% | 522%
grays3 O | 520% | 529% | 529% | 00% | 0.0% | 52.9%
araySé D [541% | 541% | 541% | 00% | 00% | 54.1%
grays5 D [549% | 549% | 549% | 00% | 00% | 54.9%
orayS6 D [561% | 56.1% | 56.1% | 00% | 00% | 56.1%
aray57 D [569% | 569% | 569% | 00% | 00% | 56.9%
orays8 T [580% | 580% | 580% | 00% | 00% | 58.0%
oray59 D [588% | 588% | 588% | 00% | 00% | 58.8%
aray60 T [60.0% | 600% | 60.0% | 00% | 00% | 60.0%
gray61 T [6129% |612% | 612% | 00% | 00% | 61.2%
oray62 T [620% | 620% | 620% | 00% | 00% | 62.0%
oray63 T [631% | 63.1% | 63.0% | 00% | 00% | 63.1%
gray64 T [639% | 63.9% | 63.9% | 00% | 00% | 63.9%
aray65 65.1% | 65.1% | 651% | 0.0% | 00% | 65.1%
oray66 659% | 65.9% | 659% | 0.0% |00% | 65.9%
darkgray 663% | 663% | 663% | 0.0% | 00% | 663%
aray67 67.1% | 67.1% | 67.1% | 0.0% | 00% | 67.1%
oray68 67.8% | 67.8% | 67.8% | 0.0% | 00% | 67.8%
aray69 69.0% | 69.0% | 69.0% |0.0% | 00% | 69.0%
aray70 702% | 702% | 702% | 0.0% | 00% | 70.2%
oray71 71.0% | 71.0% | 71.0% | 0.0% | 00% | 71.0%
gray72 722% | 722% | 122% | 00% | 00% | 722%
gray73 729% | 729% | 72.9% | 0.0% | 00% | 72.9%
aray74 741% | T41% | 741% | 0.0% | 0.0% | 74.1%
gray 745% | 745% | 745% | 0.0% | 00% | 74.5%
aray75 749% | 749% | 749% | 0.0% | 00% | 74.9%
silver 753% | 753% | 753% | 0.0% | 00% | 753%
oray76 76.1% | 76.1% | 761% | 0.0% | 00% | 76.1%
arayT7 769% | 76.9% | 769% | 0.0% | 00% | 76.9%
oray78 780% | 78.0% | 780% | 0.0% | 0.0% | 78.0%
oray79 78.8% | 78.8% | 788% | 0.0% | 0.0% | 78.8%
aray80 80.0% | 80.0% | 80.0% | 0.0% |00% | 80.0%
oray81 81.2% | 812% | 812% | 00% | 00% | 81.2%

continues on next page

24

Chapter 3. Colors

Blessed Documentation, Release 1.18.0

3.2 256 Colors

Table 1 — continued from previous page

Name Image R G B H S \
gray82 82.0% | 82.0% | 82.0% | 0.0% | 0.0% 82.0%
lightgray 82.7% 82.7% 82.7% 0.0% 0.0% 82.7%
gray83 83.1% | 83.1% | 83.1% | 0.0% | 0.0% 83.1%
gray84 83.9% | 83.9% | 83.9% | 0.0% | 0.0% 83.9%
gray85 851% | 85.1% | 85.1% | 0.0% | 0.0% 85.1%
gray86 85.9% | 859% | 85.9% | 0.0% | 0.0% 85.9%
gainsboro 86.3% 86.3% 86.3% 0.0% 0.0% 86.3%
gray87 87.1% | 87.1% | 87.1% | 0.0% | 0.0% 87.1%
gray88 87.8% | 87.8% | 87.8% | 0.0% | 0.0% 87.8%
gray89 89.0% 89.0% 89.0% 0.0% 0.0% 89.0%
gray90 89.8% | 89.8% | 89.8% | 0.0% | 0.0% 89.8%
gray9l 91.0% | 91.0% | 91.0% | 0.0% | 0.0% 91.0%
gray92 92.2% 92.2% 92.2% 0.0% 0.0% 92.2%
gray93 929% | 929% | 929% | 0.0% | 0.0% 92.9%
gray94 94.1% | 94.1% | 94.1% | 0.0% | 0.0% 94.1%
gray95 94.9% 94.9% 94.9% 0.0% 0.0% 94.9%
gray96 96.1% | 96.1% | 96.1% | 0.0% | 0.0% 96.1%
gray97 96.9% | 96.9% | 96.9% | 0.0% | 0.0% 96.9%
gray98 98.0% | 98.0% | 98.0% | 0.0% | 0.0% 98.0%
gray99 98.8% | 98.8% | 98.8% | 0.0% | 0.0% 98.8%
gray 100 100.0% | 100.0% | 100.0% | 0.0% 0.0% 100.0%

The built-in capability color () accepts a numeric index of any value between 0 and 254, I guess you could call
this “Color by number...”, it not recommended, there are many common cases where the colors do not match across
terminals!

3.3 16 Colors

Recommended for common CLI applications.

Traditional terminals are only capable of 8 colors:

black
red
green
yellow
blue

magenta

3.2. 256 Colors

25

Blessed Documentation, Release 1.18.0

* cyan
* white
Prefixed with on_, the given color is used as the background color:
* on_black
e on_red
* on_green
* on_yellow
* on_blue
* on_magenta
* on_cyan
e on_white
The same colors, prefixed with bright _or bold_, such as bright_blue, provides the other 8 colors of a 16-color terminal:
* bright_black
* bright_red
* bright_green
* bright_yellow
* bright_blue
* bright_magenta
* bright_cyan
* bright_white
Combined, there are actually three shades of grey for 16-color terminals, in ascending order of intensity:
* bright_black: is dark grey.
* white: a mild white.

e bright_white: pure white (# £ ££££f).

Note:
* bright_black is actually a very dark shade of grey!
* yellow is brown, only high-intensity yellow (bright_yellow) is yellow!

* purple is magenta.

Warning: Terminal emulators use different values for any of these 16 colors, the most common of these are
displayed at https://en.wikipedia.org/wiki/ANSI_escape_code#3/4_bit. Users can customize these 16 colors as a
common “theme”, so that one CLI application appears of the same color theme as the next.

When exact color values are needed, 24-bit Colors should be preferred, by their name or RGB value.

26 Chapter 3. Colors

https://en.wikipedia.org/wiki/ANSI_escape_code#3/4_bit

Blessed Documentation, Release 1.18.0

3.4 Monochrome

One small consideration for targeting legacy terminals, such as a v¢220, which do not support colors but do support
reverse video: select a foreground color, followed by reverse video, rather than selecting a background color directly::

the same desired background color effect as on_background:

print
print

The second phrase appears as black on green on both color terminals and a green monochrome vt220.

3.4. Monochrome

27

Blessed Documentation, Release 1.18.0

28

Chapter 3. Colors

CHAPTER
FOUR

KEYBOARD

The built-in function input () (or raw_input ()) is pretty good for a basic game:

input
sum (map (ord 2
print

print

But it has drawbacks — it’s no good for interactive apps! This function will not return until the return key is pressed,
so we can’t do any exciting animations, and we can’t understand or detect arrow keys and others required to make
awesome, interactive apps and games!

Blessed fixes this issue with a context manager, cbreak (), and a single function for all keyboard input, inkey ().

4.1 inkey()

Let’s just dive right into a rich “event loop”, that awaits a keypress for 3 seconds and tells us what key we pressed.

print
print
3
print
print str
print
print

cbreak () enters a special mode that ensures os . read () on an input stream will return as soon as input is available,
as explained in cbreak(3). This mode is combined with inkey () to decode multibyte sequences, such as \0x1bOA,
into a unicode-derived Key st roke instance.

The Keystrokereturned by inkey () is unicode — it may be printed, joined with, or compared to any other unicode
strings. It also has these special attributes:

* is_sequence (bool): Whether it is an “application” key.

* code (int): The keycode, for equality testing.

29

https://docs.python.org/3/library/functions.html#input
https://en.wikipedia.org/wiki/Terminal_mode
https://docs.python.org/3/library/os.html#os.read
http://linux.die.net/man/3/cbreak

Blessed Documentation, Release 1.18.0

* name (str): a human-readable name of any “application” key.

4.2 Keycodes

When the i s_sequence property tests True, the value of code represents a unique application key of the keyboard.

code may then be compared with attributes of Terminal, which are duplicated from those found in curses(3), or
those constants in curses beginning with phrase KEY_, as follows:

Table 1: All Terminal class attribute Keyboard codes, by name

Name Value | Example Sequence(s)
KEY_BACKSPACE 263 Ax08’, \x7f’
KEY_BEGIN 354

KEY_BTAB 353

KEY_C1 351

KEY_C3 352

KEY_CANCEL 355

KEY_CATAB 342

KEY_CENTER 350

KEY_CLEAR 333

KEY_CLOSE 356

KEY_COMMAND 357

KEY_COPY 358

KEY_CREATE 359

KEY_CTAB 341

KEY_DELETE 330 Ax1b[3~’
KEY_DL 328

KEY_DOWN 258 Ax1b[B’, \x1b[OB’
KEY_EIC 332

KEY_END 360 Ax1b[F’, \x1b[K’, “\x1b[8~’, “\x1b[OF’
KEY_ENTER 343 An’, \r’, \x1bOM’
KEY_EOL 335

KEY_EOS 334

KEY_ESCAPE 361 Ax1b’

KEY_FO0 264

KEY_F1 265 Ax1bOP’
KEY_F10 274

KEY_F11 275

KEY_F12 276

KEY_F13 277

KEY_F14 278

KEY_F15 279

KEY_F16 280

KEY_F17 281

KEY_F18 282

KEY_F19 283

KEY_F2 266 Ax1b0OQ’
KEY_F20 284

KEY_F21 285

KEY_F22 286

continues on next page

30 Chapter 4. Keyboard

http://linux.die.net/man/3/curses
https://docs.python.org/3/library/curses.html#constants
https://docs.python.org/3/library/curses.html#module-curses

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Value | Example Sequence(s)
KEY_F23 287

KEY_F3 267 ‘x1bOR’
KEY_F4 268 Ax1bOS’
KEY_F5 269

KEY_F6 270

KEY_F7 271

KEY_F8 272

KEY_F9 273

KEY_FIND 362 Ax1b[1~’
KEY_HELP 363

KEY_HOME 262 Ax1b[H’, \x1b[7~’, \x1b[OH’
KEY_IL 329
KEY_INSERT 331 Ax1b[2~’
KEY_KP_0 520 Ax1bOp’
KEY_KP_1 521 x1bOq’
KEY_KP_2 522 Ax1bOr’
KEY_KP_3 523 “x1bOs’
KEY_KP_4 524 Ax1bOt’
KEY_KP_5 525 “x1bOu’
KEY_KP_6 526 Ax1bOv’
KEY_KP_7 527 “x1bOw’
KEY_KP_8 528 Ax1bOx’
KEY_KP_9 529 “x1b0y’
KEY_KP_ADD 514 Ax1bOk’
KEY_KP_DECIMAL 517 Ax1bOn’
KEY_KP_DIVIDE 518 x1bOo’
KEY_KP_EQUAL 519 Ax1bOX’

KEY_KP_MULTIPLY 513 x1bOj’
KEY_KP_SEPARATOR | 515 “x1bOI’
KEY_KP_SUBTRACT | 516 x1bOm’

KEY_LEFT 260 “x1b[D’, \x1b[OD’
KEY_LL 347

KEY_MARK 364

KEY_MAX 511

KEY_MESSAGE 365

KEY_MIN 257

KEY_MOUSE 409

KEY_MOVE 366

KEY_NEXT 367

KEY_OPEN 368

KEY_OPTIONS 369

KEY_PGDOWN 338 x1b[U’, \x1b[6~’
KEY_PGUP 339 Xx1b[V’, \x1b[5~’
KEY_PREVIOUS 370

KEY_PRINT 346

KEY_REDO 371

KEY_REFERENCE 372

KEY_REFRESH 373

KEY_REPLACE 374

continues on next page

4.2. Keycodes 31

Blessed Documentation, Release 1.18.0

Table 1 — continued from previous page

Name Value | Example Sequence(s)
KEY_RESET 345

KEY_RESIZE 410
KEY_RESTART 375

KEY_RESUME 376

KEY_RIGHT 261 Ax1b[C’, x1b[OC’
KEY_SAVE 377

KEY_SBEG 378
KEY_SCANCEL 379
KEY_SCOMMAND 380

KEY_SCOPY 381
KEY_SCREATE 382

KEY_SDC 383

KEY_SDL 384

KEY_SDOWN 336 Ax1b[1;2B’
KEY_SELECT 385 \x1b[4~’
KEY_SEND 386

KEY_SEOL 387

KEY_SEXIT 388

KEY_SFIND 389

KEY_SHELP 390

KEY_SHOME 391

KEY_SIC 392

KEY_SLEFT 393 x1b[1;2D’
KEY_SMESSAGE 394

KEY_SMOVE 395

KEY_SNEXT 396
KEY_SOPTIONS 397
KEY_SPREVIOUS 398

KEY_SPRINT 399

KEY_SREDO 400
KEY_SREPLACE 401

KEY_SRESET 344

KEY_SRIGHT 402 Ax1b[1;2C’
KEY_SRSUME 403

KEY_SSAVE 404
KEY_SSUSPEND 405

KEY_STAB 340

KEY_SUNDO 406

KEY_SUP 337 Ax1b[1;2A°
KEY_SUSPEND 407

KEY_TAB 512 At
KEY_UNDO 408

KEY_UP 259 Ax1b[A’, \x1b[OA’
KEY_UP_LEFT 348
KEY_UP_RIGHT 349

All such keystrokes can be decoded by blessed, there is a demonstration program, keymatrix.py that tests how many
of them you can find !

32 Chapter 4. Keyboard

Blessed Documentation, Release 1.18.0

4.3 delete

Typically, backspace is “H (8, or 0x08) and delete is *? (127, or 0x7f).

On some systems however, the key for backspace is actually labeled and transmitted as “delete”, though its function
in the operating system behaves just as backspace. Blessed usually returns “backspace” in most situations.

It is highly recommend to accept both KEY_DELETE and KEY_BACKSPACE as having the same meaning except
when implementing full screen editors, and provide a choice to enable the delete mode by configuration.

4.4 Alt/meta

Programs with GNU readline, like bash, have Alt combinators, such as ALT+u to uppercase the word after cursor. This
is achieved by the configuration option altSendsEscape or metaSendsEscape in xterm.

The default for most terminals, however, is for this key to be bound by the operating system, or, used for inserting
international keys, (where the combination ALT+u, a is used to insert the character &).

It is therefore a recommendation to avoid alt or meta keys entirely in applications.

And instead prefer the ctrl-key combinations, maybe along with raw (), to avoid instructing users to custom-configure
their terminal emulators to communicate Alf sequences.

If you still wish to optionall decode them, ALT+z becomes Escape + z (or, in raw form \x1bz). This is detected by
blessings as two keystrokes, KEY_ESCAPE and 'z '. Blessings currently provides no further assistance in detecting
these key combinations.

4.3. delete 33

https://invisible-island.net/xterm/ctlseqs/ctlseqs.html#h2-Alt-and-Meta-Keys

Blessed Documentation, Release 1.18.0

34

Chapter 4. Keyboard

CHAPTER
FIVE

LOCATION

If you just want to move the location of the cursor before writing text, and aren’t worried about returning, do something
like this:

print
print 2 20
print 20, 7
print 3
Note our use of end="" to the built-in print () function, this is because the default end="\n" value causes the

cursor to move to the first column of the next row.

There are four direct movement capabilities:

move_xy (x, y) Position cursor at given X, y.

move_x (x) Position cursor at column x.

move_y (y) Position cursor at row y.

home Position cursor at (0, 0).

And four relative capabilities:

move_up or move_up (y) Position cursor 1 or y row cells above the current position.

move_down (y) Position cursor 1 or y row cells below the current position.

Note:

move_down or is often valued as \n, which additionally returns the carriage to column 0, and, depending
on your terminal emulator, may also destroy any characters to end of line.

move_down (1) is always a safe non-destructive one-notch movement in the downward direction.

move_left or move_left (x) Position cursor 1 or x column cells left of the current position.

move_right or move_right (x) Position cursor 1 or x column cells right of the current position.

35

https://docs.python.org/3/library/functions.html#print

Blessed Documentation, Release 1.18.0

5.1 Example

The source code of bounce.py combines a small bit of Keyboard input with many of the Terminal location capabilities,
home, width, height, and move_xy are used to create a classic game of tennis:

from math import

from blessed import

def roundxy
return int int

with

print

while 0.02

if 1) or 0
1
if or 0
1
print True

5.2 Context Manager

A contextlib.contextmanager (), location () is provided to move the cursor to an (x, y) screen position
and restore the previous position on exit:

with 0 1
print

print

All parameters to Iocation () are optional, we can use it without any arguments at all to restore the cursor location:

36 Chapter 5. Location

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager

Blessed Documentation, Release 1.18.0

with
print 1, 1

Note: callsto location () may not be nested.

5.3 Finding The Cursor

We can determine the cursor’s current position at anytime using get_ location ().

This uses a kind of “answer back” sequence that your terminal emulator responds to. Because the terminal may not
respond, or may take some time to respond, the t imeout keyword argument can be specified to return coordinates
(-1, -1) after a blocking timeout:

The return value of get__Iocation () mirrors the arguments of location ():

with 12, 12

print

Produces output, (12, 12)

Although this wouldn’t be suggested in most applications because of its latency, it certainly simplifies many applica-
tions, and, can also be timed, to make a determination of the round-trip time, perhaps even the bandwidth constraints,
of a remote terminal !

5.3. Finding The Cursor 37

Blessed Documentation, Release 1.18.0

38

Chapter 5. Location

CHAPTER
SIX

MEASURING

Any string containing sequences can be measured by blessed using the Iength () method. This means that blessed
can measure, right-align, center, or word-wrap its own output!

The height and width properties always provide a current readout of the size of the window:

By combining the measure of the printable width of strings containing sequences with the terminal width, the
center (), l1just (), rjust (),and wrap () methods “just work” for strings that contain sequences.

2
print

In the following example, wrap () word-wraps a short poem containing sequences:

blessed

print 25 4

6.1 Resizing

To detect when the size of the window changes, you can author a callback for SIGWINCH signals:

signal
blessed

on_resize

print

(continues on next page)

39

https://en.wikipedia.org/wiki/SIGWINCH

Blessed Documentation, Release 1.18.0

(continued from previous page)

Note: This is not compatible with Windows! We hope to make a cross-platform API for this in the future https:
//github.com/jquast/blessed/issues/131.

Sometimes it is necessary to make sense of sequences, and to distinguish them from plain text. The split_segs ()
method can allow us to iterate over a terminal string by its characters or sequences:

Will display something like, ['\x1b[Im', 'b', 'b', 'q', '"\xlb(B', '\xlb[m']

Method strip_segs () can remove all sequences from a string:

40 Chapter 6. Measuring

https://github.com/jquast/blessed/issues/131
https://github.com/jquast/blessed/issues/131

CHAPTER
SEVEN

EXAMPLES

A few programs are provided with blessed to help interactively test the various API features, but also serve as examples
of using blessed to develop applications.

These examples are not distributed with the package — they are only available in the github repository. You can retrieve
them by cloning the repository, or simply downloading the “raw” file link.

Fig. 1: x11_colorpicker.py, bounce.py, worms.py, and plasma.py.

7.1 bounce.py

https://github.com/jquast/blessed/blob/master/bin/bounce.py

This is a very brief, basic primitive non-interactive version of a “classic tennis” video game. It demonstrates basic
timed refresh of a bouncing terminal cell.

7.2 cnn.py

https://github.com/jquast/blessed/blob/master/bin/cnn.py

This program uses 3rd-party BeautifulSoup and requests library to fetch the cnn website and display news article titles
using the 11ink () method, so that they may be clicked.

7.3 detect-multibyte.py

https://github.com/jquast/blessed/blob/master/bin/detect-multibyte.py

This program also demonstrates how the get__location () method can be used to reliably test whether the terminal
emulator of the connecting client is capable of rendering multibyte characters as a single cell.

41

https://github.com/jquast/blessed/blob/master/bin/bounce.py
https://github.com/jquast/blessed/blob/master/bin/cnn.py
https://github.com/jquast/blessed/blob/master/bin/detect-multibyte.py

Blessed Documentation, Release 1.18.0

7.4 editor.py

https://github.com/jquast/blessed/blob/master/bin/editor.py

This program demonstrates using the directional keys and noecho input mode. It acts as a (very dumb) fullscreen
editor, with support for saving a file, as well as including a rudimentary line-editor.

7.5 keymatrix.py

https://github.com/jquast/blessed/blob/master/bin/keymatrix.py

This program displays a “gameboard” of all known special KEY_NAME constants. When the key is depressed, it is
highlighted, as well as displaying the unicode sequence, integer code, and friendly-name of any key pressed.

7.6 on_resize.py

https://github.com/jquast/blessed/blob/master/bin/on_resize.py

This program installs a SIGWINCH signal handler, which detects screen resizes while also polling for input, displaying
keypresses.

This demonstrates how a program can react to screen resize events.

7.7 plasma.py

https://github.com/jquast/blessed/blob/master/bin/plasma.py

This demonstrates using only on_color_rgb () and the built-in colorsys module to quickly display all of the
colors of a rainbow in a classic demoscene plasma effect

7.8 progress_bar.py

https://github.com/jquast/blessed/blob/master/bin/progress_bar.py

This program demonstrates a simple progress bar. All text is written to stderr, to avoid the need to “flush” or emit
newlines, and makes use of the move_x (hpa) capability to “overstrike” the display a scrolling progress bar.

7.9 resize.py

https://github.com/jquast/blessed/blob/master/bin/resize.py

This program demonstrates the get_location () method, behaving similar to resize(l) : set environment and
terminal settings to current window size. The window size is determined by eliciting an answerback sequence from
the connecting terminal emulator.

42 Chapter 7. Examples

https://github.com/jquast/blessed/blob/master/bin/editor.py
https://github.com/jquast/blessed/blob/master/bin/keymatrix.py
https://github.com/jquast/blessed/blob/master/bin/on_resize.py
https://github.com/jquast/blessed/blob/master/bin/plasma.py
https://docs.python.org/3/library/colorsys.html#module-colorsys
https://lodev.org/cgtutor/plasma.html
https://github.com/jquast/blessed/blob/master/bin/progress_bar.py
https://github.com/jquast/blessed/blob/master/bin/resize.py
https://github.com/joejulian/xterm/blob/master/resize.c

Blessed Documentation, Release 1.18.0

7.10 tprint.py

https://github.com/jquast/blessed/blob/master/bin/tprint.py

This program demonstrates how users may customize FormattingString styles. Accepting a string style, such as “bold”
or “bright_red” as the first argument, all subsequent arguments are displayed by the given style. This shows how a
program could provide user-customizable compound formatting names to configure a program’s styling.

7.11 worms.py

https://github.com/jquast/blessed/blob/master/bin/worms.py

This program demonstrates how an interactive game could be made with blessed. It is similar to NIBBLES.BAS or
“snake” of early mobile platforms.

7.12 x11_colorpicker.py

https://github.com/jquast/blessed/blob/master/bin/x11_colorpicker.py

This program shows all of the X11 colors, demonstrates a basic keyboard-interactive program and color selection, but
is also a useful utility to pick colors!

7.10. tprint.py 43

https://github.com/jquast/blessed/blob/master/bin/tprint.py
https://github.com/jquast/blessed/blob/master/bin/worms.py
https://github.com/tangentstorm/tangentlabs/blob/master/qbasic/NIBBLES.BAS
https://github.com/jquast/blessed/blob/master/bin/x11_colorpicker.py

Blessed Documentation, Release 1.18.0

44

Chapter 7. Examples

CHAPTER
EIGHT

8.1 color.py

Sub-module providing color functions.
References,
* https://en.wikipedia.org/wiki/Color_difference
* http://www.easyrgb.com/en/math.php
* Measuring Colour by R.W.G. Hunt and M.R. Pointer

rgb_to_xyz (red, green, blue)
Convert standard RGB color to XYZ color.

Parameters
* red (int)— RGB value of Red.
* green (int)— RGB value of Green.
* blue (int) - RGB value of Blue.
Returns Tuple (X, Y, Z) representing XYZ color
Return type tuple
D65/2° standard illuminant

xyz_to_lab (x_val,y_val, z_val)
Convert XYZ color to CIE-Lab color.

Parameters
e x_val (float) - XYZ value of X.
e y val (float)—XYZ value of Y.
* z_val (float)— XYZ value of Z.

Returns Tuple (L, a, b) representing CIE-Lab color

Return type tuple
D65/2° standard illuminant

rgb_to_lab (red, green, blue)
Convert RGB color to CIE-Lab color.

Parameters

e red (int) - RGB value of Red.

API DOCUMENTATION

45

https://en.wikipedia.org/wiki/Color_difference
http://www.easyrgb.com/en/math.php
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Blessed Documentation, Release 1.18.0

* green (int)— RGB value of Green.
¢ blue (int)— RGB value of Blue.
Returns Tuple (L, a, b) representing CIE-Lab color
Return type tuple
D65/2° standard illuminant

dist_rgb (rghl, rgh2)
Determine distance between two rgb colors.

Parameters

* rgbl (tuple)— RGB color definition

* rgb2 (tuple)— RGB color definition
Returns Square of the distance between provided colors
Return type float

This works by treating RGB colors as coordinates in three dimensional space and finding the closest point within
the configured color range using the formula:

2 2 2 2

For efficiency, the square of the distance is returned which is sufficient for comparisons

dist_rgb_weighted (rghl, rgh2)
Determine the weighted distance between two rgb colors.

Parameters

* rgbl (tuple)— RGB color definition

e rgb2 (tuple)— RGB color definition
Returns Square of the distance between provided colors
Return type float

Similar to a standard distance formula, the values are weighted to approximate human perception of color
differences

For efficiency, the square of the distance is returned which is sufficient for comparisons

dist_cie76 (rghl, rgh2)
Determine distance between two rgb colors using the CIE94 algorithm.

Parameters
* rgbl (tuple)— RGB color definition
* rgb2 (tuple)— RGB color definition
Returns Square of the distance between provided colors
Return type float
For efficiency, the square of the distance is returned which is sufficient for comparisons

dist_cie94 (rgbl, rgh2)
Determine distance between two rgb colors using the CIE94 algorithm.

Parameters

* rgbl (tuple)— RGB color definition

46 Chapter 8. API Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Blessed Documentation, Release 1.18.0

* rgb2 (tuple)— RGB color definition
Returns Square of the distance between provided colors
Return type float
For efficiency, the square of the distance is returned which is sufficient for comparisons

dist_cie2000 (rgbl, rgb2)
Determine distance between two rgb colors using the CIE2000 algorithm.

Parameters

e rgbl (tuple)— RGB color definition

* rgb2 (tuple)— RGB color definition
Returns Square of the distance between provided colors
Return type float

For efficiency, the square of the distance is returned which is sufficient for comparisons

8.2 colorspace.py

Color reference data.
References,
* https://github.com/freedesktop/xorg-rgb/blob/master/rgb.txt
e https://github.com/ThomasDickey/xterm-snapshots/blob/master/256colres.h
* https://github.com/ThomasDickey/xterm-snapshots/blob/master/XTerm-col.ad
* https://en.wikipedia.org/wiki/ANSI_escape_code#Colors
* https://gist.github.com/X Vilka/8346728
* https://devblogs.microsoft.com/commandline/24-bit-color-in-the-windows-console/
* http://jdebp.eu/Softwares/nosh/guide/TerminalCapabilities.html

class RGBColor (red, green, blue)
Named tuple for an RGB color definition.

Create new instance of RGBColor(red, green, blue)

RGB_256TABLE = (RGBColor (red=0, green=0, blue=0), RGBColor (red=205, green=0, blue=0), RGBC

Curses color indices of 8, 16, and 256-color terminals

X11_COLORNAMES_TO_RGB = {'aliceblue': RGBColor (red=240, green=248, blue=255),

X11 Color names to (XTerm-defined) RGB values from xorg-rgb/rgb.txt

8.2. colorspace.py

47

'antiquewhilt

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://github.com/freedesktop/xorg-rgb/blob/master/rgb.txt
https://github.com/ThomasDickey/xterm-snapshots/blob/master/256colres.h
https://github.com/ThomasDickey/xterm-snapshots/blob/master/XTerm-col.ad
https://en.wikipedia.org/wiki/ANSI_escape_code#Colors
https://gist.github.com/XVilka/8346728
https://devblogs.microsoft.com/commandline/24-bit-color-in-the-windows-console/
http://jdebp.eu/Softwares/nosh/guide/TerminalCapabilities.html

Blessed Documentation, Release 1.18.0

8.3 formatters.py

Sub-module providing sequence-formatting functions.

make colors ()
Return set of valid colors and their derivatives.

Return type set
Returns Color names with prefixes

COLORS = {'aliceblue', 'antiquewhite', 'antiquewhitel', 'antiquewhite2', 'antiquewhite3',
Valid colors and their background (on), bright, and bright-background derivatives.

COMPOUNDABLES = {'blink', 'bold', 'italic', 'reverse', 'standout', 'underline'}
Attributes that may be compounded with colors, by underscore, such as ‘reverse_indigo’.

class ParameterizingString (cap, normal=", name='<not specified>")
A Unicode string which can be called as a parameterizing termcap.

For example:

blessed

Class constructor accepting 3 positional arguments.
Parameters
* cap (str)— parameterized string suitable for curses.tparm()
* normal (str) - terminating sequence for this capability (optional).
* name (st r)—name of this terminal capability (optional).

__call__ (*args)
Returning FormattingString instance for given parameters.

Return evaluated terminal capability (self), receiving arguments xargs, followed by the terminating se-
quence (self.normal) into a FormattingString capable of being called.

Raises
* TypeError — Mismatch between capability and arguments
* curses.error —curses.tparm() raised an exception
Return type FormattingStringor NullCallableString
Returns Callable string for given parameters

class ParameterizingProxyString (fint_pair, normal="", name='<not specified>")
A Unicode string which can be called to proxy missing termcap entries.

This class supports the function get_proxy_string(), and mirrors the behavior of
ParameterizingString, except that instead of a capability name, receives a format string, and
callable to filter the given positional xargs of ParameterizingProxyString.__call__ () into a
terminal sequence.

For example:

48 Chapter 8. API Documentation

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/curses.html#curses.error
https://docs.python.org/3/library/curses.html#curses.tparm

Blessed Documentation, Release 1.18.0

blessed

Class constructor accepting 4 positional arguments.
Parameters

* fmt_pair (tuple)—Two element tuple containing: - format string suitable for displaying
terminal sequences - callable suitable for receiving __call__ arguments for formatting string

* normal (str) - terminating sequence for this capability (optional).
* name (st r)—name of this terminal capability (optional).

__call__ (*args)
Returning FormattingString instance for given parameters.

Arguments are determined by the capability. For example, hpa (move_x) receives only a single integer,
whereas cup (move) receives two integers. See documentation in terminfo(5) for the given capability.

Return type FormattingString
Returns Callable string for given parameters

class FormattingString (sequence, normal="")
A Unicode string which doubles as a callable.

This is used for terminal attributes, so that it may be used both directly, or as a callable. When used directly, it
simply emits the given terminal sequence. When used as a callable, it wraps the given (string) argument with
the 2nd argument used by the class constructor:

blessed

print (repr

Class constructor accepting 2 positional arguments.
Parameters
* sequence (st r) - terminal attribute sequence.
* normal (str) - terminating sequence for this attribute (optional).

__call__ (*args)
Return text joined by sequence and normal.

Raises TypeError — Not a string type
Return type str

Returns Arguments wrapped in sequence and normal

8.3. formatters.py 49

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

class FormattingOtherString (direct, target)
A Unicode string which doubles as a callable for another sequence when called.

This is used for the move_up (), down, left, and right () family of functions:

blessed

print (repr

print (repr 666

print (repr

Class constructor accepting 2 positional arguments.
Parameters
* direct (str) - capability name for direct formatting,eg ('x' + term.right).
* target (str)— capability name for callable,eg ('x' + term.right (99)).

__call__ (*args)
Return text by target.

class NullCallableString
A dummy callable Unicode alternative to FormattingString.

This is used for colors on terminals that do not support colors, it is just a basic form of unicode that may also
act as a callable.

Class constructor.

__call__ (*args)
Allow empty string to be callable, returning given string, if any.

When called with an int as the first arg, return an empty Unicode. An int is a good hint that I am a
ParameterizingString, as there are only about half a dozen string-returning capabilities listed in
terminfo(5) which accept non-int arguments, they are seldom used.

When called with a non-int as the first arg (no no args at all), return the first arg, acting in place of
FormattingString without any attributes.

get_proxy_string (term, attr)
Proxy and return callable string for proxied attributes.

Parameters

e term (Terminal)— Terminal instance.

* attr (str) - terminal capability name that may be proxied.
Return type None or ParameterizingProxyString.

Returns ParameterizingProxyString for some attributes of some terminal types that sup-
port it, where the terminfo(5) database would otherwise come up empty, such as move_x at-
tribute for term.kind of screen. Otherwise, None.

split_compound (compound)
Split compound formating string into segments.

50 Chapter 8. API Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

Parameters compound (st r)— a string that may contain compounds, separated by underline (_).
Return type list
Returns List of formating string segments
resolve_capability (ferm, attr)
Resolve a raw terminal capability using tigetstr ().
Parameters
* term(Terminal)— Terminal instance.
* attr (str) - terminal capability name.

Returns string of the given terminal capability named by attr, which may be empty (u”) if not
found or not supported by the given kind.

Return type str

resolve_color (term, color)
Resolve a simple color name to a callable capability.

This function supports resolve_attribute ().
Parameters
e term (Terminal) - Terminal instance.
* color (str)— any string found in set COLORS.

Returns a string class instance which emits the terminal sequence for the given color, and may be
used as a callable to wrap the given string with such sequence.

Returns NullCallableString when number_of colors is 0, otherwise
FormattingString.

Return type NulliCallableStringor FormattingString

resolve_attribute (term, attr)
Resolve a terminal attribute name into a capability class.

Parameters
* term(Terminal)— Terminal instance.

* attr (str) — Sugary, ordinary, or compound formatted terminal capability, such as

LLIT3

“red_on_white”, “normal”, “red”, or “bold_on_black™.

Returns a string class instance which emits the terminal sequence for the given terminal capability,
or may be used as a callable to wrap the given string with such sequence.

Returns NullCallableString when number of colors is 0, otherwise
FormattingString.

Return type NuliCallableStringor FormattingString

8.3. formatters.py 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

8.4 keyboard.py

Sub-module providing ‘keyboard awareness’.

class Keystroke (ucs=", code=None, name=None)

A unicode-derived class for describing a single keystroke.

A class instance describes a single keystroke received on input, which may contain multiple characters as a
multibyte sequence, which is indicated by properties i s_sequence returning True.

When the string is a known sequence, code matches terminal class attributes for comparison, such as term.
KEY_LEFT.

The string-name of the sequence, such as u'KEY_LEFT"' is accessed by property name, and is used by the
__repr__ () method to display a human-readable form of the Keystroke this class instance represents. It may
otherwise by joined, split, or evaluated just as as any other unicode string.

Class constructor.

static new__ (cls, ucs=", code=None, name=None)

Class constructor.

property is_sequence
Whether the value represents a multibyte sequence (bool).

property name
String-name of key sequence, such as u'KEY_LEFT" (str).

property code
Integer keycode value of multibyte sequence (int).

get_keyboard_codes ()

Return mapping of keycode integer values paired by their curses key-name.
Return type dict

Returns Dictionary of (code, name) pairs for curses keyboard constant values and their mnemonic
name. Such as key 260, with the value of its identity, u' KEY_LEFT'.

These keys are derived from the attributes by the same of the curses module, with the following exceptions:
* KEY_DELETE in place of KEY_DC
* KEY_INSERT in place of KEY_IC
* KEY_PGUP in place of KEY_PPAGE
e KEY_PGDOWN in place of KEY_NPAGE
* KEY_ESCAPE in place of KEY_EXIT
* XKEY_SUP in place of KEY_SR
e KEY_SDOWN in place of KEY_SF

This function is the inverse of get_curses_keycodes (). With the given override “mixins” listed above,
the keycode for the delete key will map to our imaginary KEY_DELETE mnemonic, effectively erasing the
phrase KEY_DC from our code vocabulary for anyone that wishes to use the return value to determine the
key-name by keycode.

get_keyboard_sequences (ferm)

Return mapping of keyboard sequences paired by keycodes.

Parameters term (blessed. Terminal)— Terminal instance.

52

Chapter 8. API Documentation

https://docs.python.org/3/library/stdtypes.html#dict

Blessed Documentation, Release 1.18.0

Returns mapping of keyboard unicode sequences paired by keycodes as integer. This is used as the
argument mapper to the supporting function resolve_sequence ().

Return type OrderedDict

Initialize and return a keyboard map and sequence lookup table, (sequence, keycode) from Terminal in-
stance term, where sequence is a multibyte input sequence of unicode characters, suchas u'\x1b[D"', and
keycode is an integer value, matching curses constant such as term.KEY_LEFT.

The return value is an OrderedDict instance, with their keys sorted longest-first.

_alternative_left_right (ferm)
Determine and return mapping of left and right arrow keys sequences.

Parameters term (blessed. Terminal)— Terminal instance.
Return type dict

Returns Dictionary of sequences term._cufl, and term._cubl, valued as KEY_RIGHT,
KEY_LEFT (when appropriate).

This function supports get_terminal_sequences () to discover the preferred input sequence for the left
and right application keys.

It is necessary to check the value of these sequences to ensure we donotuse u' 'andu'\b' for KEY_RIGHT
and KEY_LEFT, preferring their true application key sequence, instead.

DEFAULT_ SEQUENCE_MIXIN = (('\n', 343), ('\r', 343), ('\x08', 263), ('\t', 512), ('\xlb', 3
In a perfect world, terminal emulators would always send exactly what the terminfo(5) capability database plans
for them, accordingly by the value of the TERM name they declare.

But this isn’t a perfect world. Many vt220-derived terminals, such as those declaring ‘xterm’, will continue to
send vt220 codes instead of their native-declared codes, for backwards-compatibility.

This goes for many: rxvt, putty, iTerm.
These “mixins” are used for all terminals, regardless of their type.

Furthermore, curses does not provide sequences sent by the keypad, at least, it does not provide a way to
distinguish between keypad 0 and numeric 0.

CURSES_KEYCODE_OVERRIDE_MIXIN = (('KEY DELETE', 330), ('KEY_INSERT', 331), ('KEY PGUP', 33!
Override mixins for a few curses constants with easier mnemonics: there may only be a 1:1 mapping when only
a keycode (int) is given, where these phrases are preferred.

_CURSES_KEYCODE_ADDINS = ('TAB', 'KP_MULTIPLY', 'KP_ADD', 'KP_SEPARATOR', 'KP_SUBTRACT', 'l
Though we may determine keynames and codes for keyboard input that generate multibyte sequences, it is also
especially useful to aliases a few basic ASCII characters such as KEY_TAB instead of u' \t ' for uniformity.

Furthermore, many key-names for application keys enabled only by context manager keypad () are surpris-
ingly absent. We inject them here directly into the curses module.

8.4. keyboard.py 53

https://docs.python.org/3/library/stdtypes.html#dict

Blessed Documentation, Release 1.18.0

8.5 sequences.py

Module providing ‘sequence awareness’.

class Sequence (sequence_text, term)
A “sequence-aware” version of the base st r class.

This unicode-derived class understands the effect of escape sequences of printable length, allowing a properly
implemented rjust (), 1 just (), center (),and length ().

Class constructor.
Parameters
* sequence_text (str)— A string that may contain sequences.
* term(blessed. Terminal)— Terminal instance.

1just (width, fillchar="")
Return string containing sequences, left-adjusted.

Parameters

* width (int) — Total width given to left-adjust text. If unspecified, the width of the
attached terminal is used (default).

e fillchar (str) — String for padding right-of text.
Returns String of text, left-aligned by width.
Return type str

rjust (width, fillchar="")
Return string containing sequences, right-adjusted.

Parameters

* width (int) — Total width given to right-adjust text. If unspecified, the width of the
attached terminal is used (default).

e fillchar (str) - String for padding left-of text.
Returns String of text, right-aligned by width.
Return type str

center (width, fillchar="")
Return string containing sequences, centered.

Parameters

* width (int)-Total width given to center t ext. If unspecified, the width of the attached
terminal is used (default).

e fillchar (str)— String for padding left and right-of text.
Returns String of text, centered by width.
Return type str

length ()
Return the printable length of string containing sequences.

Strings containing term. left or \b will cause “overstrike”, but a length less than O is not ever returned.
So _\b+ is a length of 1 (displays as +), but \b alone is simply a length of 0.

54 Chapter 8. API Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

Some characters may consume more than one cell, mainly those CJK Unified Ideographs (Chinese,
Japanese, Korean) defined by Unicode as half or full-width characters.

For example:

blessed
blessed.sequences

Note: Although accounted for, strings containing sequences such as term. clear will not give accurate
returns, it is not considered lengthy (a length of 0).

strip (chars=None)
Return string of sequences, leading and trailing whitespace removed.

Parameters chars (st r)— Remove characters in chars instead of whitespace.
Return type str
Returns string of sequences with leading and trailing whitespace removed.

1strip (chars=None)
Return string of all sequences and leading whitespace removed.

Parameters chars (st r)— Remove characters in chars instead of whitespace.
Return type str
Returns string of sequences with leading removed.

rstrip (chars=None)
Return string of all sequences and trailing whitespace removed.

Parameters chars (st r) — Remove characters in chars instead of whitespace.
Return type str
Returns string of sequences with trailing removed.

strip_seqgs ()
Return text stripped of only its terminal sequences.

Return type str
Returns Text with terminal sequences removed

padd (strip=False)
Return non-destructive horizontal movement as destructive spacing.

Parameters strip (bool)— Strip terminal sequences
Return type str
Returns Text adjusted for horizontal movement

class SequenceTextWrapper (width, term, **kwargs)
Object for wrapping/filling text. The public interface consists of the wrap() and fill() methods; the other methods
are just there for subclasses to override in order to tweak the default behaviour. If you want to completely replace
the main wrapping algorithm, you’ll probably have to override _wrap_chunks().

Several instance attributes control various aspects of wrapping:

8.5. sequences.py 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

width (default: 70) the maximum width of wrapped lines (unless break_long_words is false)

initial_indent (default: ‘“’) string that will be prepended to the first line of wrapped output. Counts
towards the line’s width.

subsequent_indent (default: ‘“’) string that will be prepended to all lines save the first of wrapped output;
also counts towards each line’s width.

expand_tabs (default: true) Expand tabs in input text to spaces before further processing. Each tab will
become O .. ‘tabsize’ spaces, depending on its position in its line. If false, each tab is treated as a
single character.

tabsize (default: 8) Expand tabs in input text to 0 .. ‘tabsize’ spaces, unless ‘expand_tabs’ is false.

replace_whitespace (default: true) Replace all whitespace characters in the input text by spaces after
tab expansion. Note that if expand_tabs is false and replace_whitespace is true, every tab will be
converted to a single space!

fix_sentence_endings (default: false) Ensure that sentence-ending punctuation is always followed by
two spaces. Off by default because the algorithm is (unavoidably) imperfect.

break_long_words (default: true) Break words longer than ‘width’. If false, those words will not be
broken, and some lines might be longer than ‘width’.

break_on_hyphens (default: true) Allow breaking hyphenated words. If true, wrapping will occur
preferably on whitespaces and right after hyphens part of compound words.

drop_whitespace (default: true) Drop leading and trailing whitespace from lines.
max_lines (default: None) Truncate wrapped lines.
placeholder (default: ¢ [...]°) Append to the last line of truncated text.

Class initializer.

This class supports the wrap () method.

_wrap_chunks (chunks)
Sequence-aware variant of textwrap.TextWrapper._wrap_chunks ().

Raises ValueError — self.width is not a positive integer
Return type list
Returns text chunks adjusted for width

This simply ensures that word boundaries are not broken mid-sequence, as standard python textwrap would
incorrectly determine the length of a string containing sequences, and may also break consider sequences
part of a “word” that may be broken by hyphen (-), where this implementation corrects both.

_handle_long_word (reversed_chunks, cur_line, cur_len, width)
Sequence-aware textwrap.TextWrapper._handle_long_word().

This simply ensures that word boundaries are not broken mid-sequence, as standard python textwrap would
incorrectly determine the length of a string containing sequences, and may also break consider sequences
part of a “word” that may be broken by hyphen (-), where this implementation corrects both.

iter_ parse (term, text)
Generator yields (text, capability) for characters of text.

value for capability may be None, where text is str of length 1. Otherwise, text is a full matching
sequence of given capability.

measure_length (fext, term)
Deprecated since version 1.12.0..

56 Chapter 8. API Documentation

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

Return type int

Returns Length of the first sequence in the string

8.6 terminal.py

Module containing Terminal, the primary API entry point.

class Terminal (kind=None, stream=None, force_styling=False)
An abstraction for color, style, positioning, and input in the terminal.

This keeps the endless callsto t igetstr () and tparm () outof your code, acts intelligently when somebody
pipes your output to a non-terminal, and abstracts over the complexity of unbuffered keyboard input. It uses the
terminfo database to remain portable across terminal types.

Initialize the terminal.
Parameters

* kind (str) — A terminal string as taken by curses.setupterm (). Defaults to the
value of the TERM environment variable.

Note: Terminals withing a single process must share a common kind. See _CUR_TERM.

* stream (file) — A file-like object representing the Terminal output. Defaults to the
original value of sys.___stdout__,like curses.initscr () does.

If st reamis not a tty, empty Unicode strings are returned for all capability values, so things
like piping your program output to a pipe or file does not emit terminal sequences.

» force_styling (bool) — Whether to force the emission of capabilities even if sys.
__stdout__ does not seem to be connected to a terminal. If you want to force styling to
not happen, use force_styling=None.

This comes in handy if users are trying to pipe your output through something like less
—r or build systems which support decoding of terminal sequences.

__getattr__ (attr)
Return a terminal capability as Unicode string.

For example, term.bold is a unicode string that may be prepended to text to set the video attribute
for bold, which should also be terminated with the pairing normal. This capability returns a callable,
so you can use term.bold ("hi") which results in the joining of (term.bold, "hi", term.
normal).

Compound formatters may also be used. For example:

For a parameterized capability such as move (or cup), pass the parameters as positional arguments:

|

See the manual page terminfo(5) for a complete list of capabilities and their arguments.

property kind
Read-only property: Terminal kind determined on class initialization.

Return type str

8.6. terminal.py 57

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/curses.html#curses.setupterm
https://docs.python.org/3/library/sys.html#sys.__stdout__
https://docs.python.org/3/library/curses.html#curses.initscr
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/sys.html#sys.__stdout__
https://docs.python.org/3/library/sys.html#sys.__stdout__
https://invisible-island.net/ncurses/man/terminfo.5.html
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

property does_styling
Read-only property: Whether this class instance may emit sequences.

Return type bool

property is_a_ tty
Read-only property: Whether st ream is a terminal.

Return type bool

property height
Read-only property: Height of the terminal (in number of lines).

Return type int

property width
Read-only property: Width of the terminal (in number of columns).

Return type int

property pixel_height
Read-only property: Height ofthe terminal (in pixels).

Return type int

property pixel_width
Read-only property: Width of terminal (in pixels).

Return type int

location (x=None, y=None)
Context manager for temporarily moving the cursor.

Parameters
* x (int)—horizontal position, from left, 0, to right edge of screen, self.width - 1.
* y (int) — vertical position, from top, 0, to bottom of screen, self.height - 1.
Returns a context manager.
Return type Iterator

Move the cursor to a certain position on entry, do any kind of I/O, and upon exit let you print stuff there,
then return the cursor to its original position:

range 1
print
print

Specify x to move to a certain column, y to move to a certain row, both, or neither. If you specify neither,
only the saving and restoration of cursor position will happen. This can be useful if you simply want to
restore your place after doing some manual cursor movement.

Calls cannot be nested: only one should be entered at a time.

Note: The argument order (x, y) differs from the return value order (y, x) of get_location(), or

argument order (y, x) of move (). This is for API Compaibility with the blessings library, sorry for the
trouble!

58

Chapter 8. API Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Blessed Documentation, Release 1.18.0

get_location (timeout=None)
Return tuple (row, column) of cursor position.

Parameters timeout (float)— Return after time elapsed in seconds with value (-1, -1)
indicating that the remote end did not respond.

Return type tuple

Returns cursor position as tuple in form of (y, x). When atimeout is specified, always ensure
the return value is checked for (-1, -1).

The location of the cursor is determined by emitting the u7 terminal capability, or VT100 Query Cursor
Position when such capability is undefined, which elicits a response from a reply string described by
capability u6, or again VT100’s definition of \x1b [$1%d; $dR when undefined.

The (y, x) return value matches the parameter order of the move xy () capability. The following
sequence should cause the cursor to not move at all:

And the following should assert True with a terminal:

10, 20

fullscreen ()
Context manager that switches to secondary screen, restoring on exit.

Under the hood, this switches between the primary screen buffer and the secondary one. The primary one
is saved on entry and restored on exit. Likewise, the secondary contents are also stable and are faithfully
restored on the next entry:

Note: There is only one primary and one secondary screen buffer. fullscreen () calls cannot be
nested, only one should be entered at a time.

hidden_cursor ()
Context manager that hides the cursor, setting visibility on exit.

with term.hidden_cursor(): main()

Note: hidden_cursor () calls cannot be nested: only one should be entered at a time.

move_xy (x,y)
A callable string that moves the cursor to the given (x, vy) screen coordinates.

Parameters

* x (int) —horizontal position, from left, 0, to right edge of screen, self.width - 1.

8.6. terminal.py 59

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
http://www.termsys.demon.co.uk/vtansi.htm#status
http://www.termsys.demon.co.uk/vtansi.htm#status
https://docs.python.org/3/library/functions.html#int

Blessed Documentation, Release 1.18.0

* y (int) — vertical position, from top, 0, to bottom of screen, self.height - 1.
Return type ParameterizingString
Returns Callable string that moves the cursor to the given coordinates

move_yx (y, x)
A callable string that moves the cursor to the given (y, x) screen coordinates.

Parameters

* y (int) — vertical position, from top, 0, to bottom of screen, self.height - 1.

* x (1int)— horizontal position, from left, 0, to right edge of screen, self.width - 1.
Return type ParameterizingString
Returns Callable string that moves the cursor to the given coordinates

property move_left
Move cursor 1 cells to the left, or callable string for n>1 cells.

property move_right
Move cursor 1 or more cells to the right, or callable string for n>1 cells.

property move_up
Move cursor 1 or more cells upwards, or callable string for n>1 cells.

property move_down
Move cursor 1 or more cells downwards, or callable string for n>1 cells.

property color
A callable string that sets the foreground color.

Return type ParameterizingString

The capability is unparameterized until called and passed a number, at which point it returns another string
which represents a specific color change. This second string can further be called to color a piece of text
and set everything back to normal afterward.

This should not be used directly, but rather a specific color by name or color._rgb () value.

color_rgb (red, green, blue)
Provides callable formatting string to set foreground color to the specified RGB color.

Parameters
e red (int) - RGB value of Red.
* green (int)— RGB value of Green.
* blue (int) - RGB value of Blue.
Return type FormattingString
Returns Callable string that sets the foreground color

If the terminal does not support RGB color, the nearest supported color will be determined using
color_distance_algorithm.

property on_color
A callable capability that sets the background color.

Return type ParameterizingString

on_color_rgb (red, green, blue)
Provides callable formatting string to set background color to the specified RGB color.

60 Chapter 8. API Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Blessed Documentation, Release 1.18.0

Parameters
e red (int) - RGB value of Red.
* green (int)— RGB value of Green.
¢ blue (int) - RGB value of Blue.
Return type FormattingString
Returns Callable string that sets the foreground color

If the terminal does not support RGB color, the nearest supported color will be determined using
color_distance_algorithm.

formatter (value)
Provides callable formatting string to set color and other text formatting options.

Parameters value (str)— Sugary, ordinary, or compound formatted terminal capability, such

CLINT3

as “red_on_white”, “normal”, “red”, or “bold_on_black™.
Return type FormattingStringorNullCallableString
Returns Callable string that sets color and other text formatting options

Calling term. formatter ('bold_on_red') is equivalent to term.bold_on_red, but a string
that is not a valid text formatter will return a Nul1lCallableString. This is intended to allow valida-
tion of text formatters without the possibility of inadvertently returning another terminal capability.

rgb_downconvert (red, green, blue)
Translate an RGB color to a color code of the terminal’s color depth.

Parameters
e red (int)— RGB value of Red (0-255).
* green (int)— RGB value of Green (0-255).
* blue (int) - RGB value of Blue (0-255).
Return type int
Returns Color code of downconverted RGB color

property normal
A capability that resets all video attributes.

Return type str

normal is an alias for sgr0 or exit_attribute_mode. Any styling attributes previously applied,
such as foreground or background colors, reverse video, or bold are reset to defaults.

link (url, text, url_id="")
Display text that when touched or clicked, navigates to url.

Optional url_id may be specified, so that non-adjacent cells can reference a single target, all
cells painted with the same “id” will highlight on hover, rather than any individual one, as de-

scribed in “Hovering and underlining the id parameter” of gist https://gist.github.com/egmontkob/
eb114294efbecd5adb1944c9f3cbSfeda.

Parameters
e url{ (str)— Hyperlink URL.
e text{ (str) - Clickable text.

e url_id{ (str)—- Optional ‘id’.

8.6. terminal.py 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda
https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

Return type str
Returns String of text as a hyperlink to url.

property stream
Read-only property: stream the terminal outputs to.

This is a convenience attribute. It is used internally for implied writes performed by context managers
hidden_cursor (), fullscreen(), location (),and keypad ().

property number_ of colors
Number of colors supported by terminal.

Common return values are 0, 8, 16, 256, or 1 << 24.
This may be used to test whether the terminal supports colors, and at what depth, if that’s a concern.

property color_ distance_algorithm
Color distance algorithm used by rgb_downconvert ().

The slowest, but most accurate, ‘cie2000’, is default. Other available options are ‘rgb’, ‘rgb-weighted’,
‘cie76’, and ‘cie94’.
1just (text, width=None, fillchar="")
Left-align text, which may contain terminal sequences.
Parameters

* text (str)— String to be aligned

* width (int) - Total width to fill with aligned text. If unspecified, the whole width of the
terminal is filled.

e fillchar (str) - String for padding the right of text
Return type str
Returns String of text, left-aligned by width.

rijust (text, width=None, fillchar="")
Right-align text, which may contain terminal sequences.

Parameters
* text (str)— String to be aligned

* width (int) - Total width to fill with aligned text. If unspecified, the whole width of the
terminal is used.

e fillchar (str)— String for padding the left of text
Return type str
Returns String of text, right-aligned by width.

center (text, width=None, fillchar="")
Center text, which may contain terminal sequences.

Parameters
* text (str)— String to be centered

* width (int) — Total width in which to center text. If unspecified, the whole width of the
terminal is used.

e fillchar (str) - String for padding the left and right of text
Return type str

62 Chapter 8. API Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

Returns String of text, centered by width

length (fext)
Return printable length of a string containing sequences.

Parameters text (str)— String to measure. May contain terminal sequences.
Return type int
Returns The number of terminal character cells the string will occupy when printed

Wide characters that consume 2 character cells are supported:

Note: Sequences such as ‘clear’, which is considered as a “movement sequence” because it would move
the cursor to (y, x)(0, 0), are evaluated as a printable length of 0.

strip (text, chars=None)
Return t ext without sequences and leading or trailing whitespace.

Return type str

Returns Text with leading and trailing whitespace removed

rstrip (text, chars=None)
Return text without terminal sequences or trailing whitespace.

Return type str

Returns Text with terminal sequences and trailing whitespace removed

1strip (text, chars=None)
Return text without terminal sequences or leading whitespace.

Return type str

Returns Text with terminal sequences and leading whitespace removed

strip_ seqgs (rext)
Return text stripped of only its terminal sequences.

Return type str

Returns Text with terminal sequences removed

o

8.6. terminal.py 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Blessed Documentation, Release 1.18.0

Note: Non-destructive sequences that adjust horizontal distance (such as \b or term.cuf (5)) are
replaced by destructive space or erasing.

split_seqs (fext, **kwds)
Return text split by individual character elements and sequences.

Parameters

* text (str) - String containing sequences

* kwds — remaining keyword arguments for re . split ().
Return type list[str]

Returns List of sequences and individual characters

wrap (text, width=None, **kwargs)
Text-wrap a string, returning a list of wrapped lines.

Parameters

* text (str) — Unlike textwrap.wrap (), text may contain terminal sequences,
such as colors, bold, or underline. By default, tabs in text are expanded by string.
expandtabs ().

e width (int) — Unlike textwrap.wrap (), width will default to the width of the
attached terminal.

* kwargs — See textwrap.TextWrapper
Return type list
Returns List of wrapped lines
See textwrap.TextWrapper for keyword arguments that can customize wrapping behaviour.

getch ()
Read, decode, and return the next byte from the keyboard stream.

Return type unicode

Returns a single unicode character, or u'"' if a multi-byte sequence has not yet been fully
received.

This method name and behavior mimics curses getch (void), and it supports inkey (), reading only
one byte from the keyboard string at a time. This method should always return without blocking if called
after kbhit () has returned True.

Implementors of alternate input stream methods should override this method.

ungetch (zext)
Buffer input data to be discovered by next call to inkey ().

Parameters text (str)— String to be buffered as keyboard input.

kbhit (timeout=None)
Return whether a keypress has been detected on the keyboard.

This method is used by inkey () to determine if a byte may be read using getch () without blocking.
The standard implementation simply uses the select.select () call on stdin.

64 Chapter 8. API Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/re.html#re.split
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/textwrap.html#textwrap.wrap
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/textwrap.html#textwrap.wrap
https://docs.python.org/3/library/textwrap.html#textwrap.TextWrapper
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/textwrap.html#textwrap.TextWrapper
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/select.html#select.select

Blessed Documentation, Release 1.18.0

Parameters timeout (float) — When timeout is 0, this call is non-blocking, otherwise
blocking indefinitely until keypress is detected when None (default). When t imeout is a
positive number, returns after t imeout seconds have elapsed (float).

Return type bool

Returns True if a keypress is awaiting to be read on the keyboard attached to this terminal.
When input is not a terminal, False is always returned.

cbreak ()
Allow each keystroke to be read immediately after it is pressed.

This is a context manager for tty . setcbreak ().

This context manager activates ‘rare’ mode, the opposite of ‘cooked’ mode: On entry, tty.
setcbreak () mode is activated disabling line-buffering of keyboard input and turning off automatic
echo of input as output.

Note: You must explicitly print any user input you would like displayed. If you provide any kind of
editing, you must handle backspace and other line-editing control functions in this mode as well!

Normally, characters received from the keyboard cannot be read by Python until the Return key is pressed.
Also known as cooked or canonical input mode, it allows the tty driver to provide line-editing before
shuttling the input to your program and is the (implicit) default terminal mode set by most unix shells
before executing programs.

Technically, this context manager sets the termios attributes of the terminal attached to sys.
__stdin__ .

Note: tty.setcbreak () sets VMIN = 1 and VIIME = 0, see http://www.unixwiz.net/techtips/
termios-vmin-vtime.html

raw ()
A context manager for tty.setraw ().

Although both break () and raw () modes allow each keystroke to be read immediately after it is
pressed, Raw mode disables processing of input and output.

In cbreak mode, special input characters such as ~C or *S are interpreted by the terminal driver and
excluded from the stdin stream. In raw mode these values are receive by the inkey () method.

Because output processing is not done, the newline '\n"' is not enough, you must also print carriage return
to ensure that the cursor is returned to the first column:

with
print

keypad ()
Context manager that enables directional keypad input.

On entrying, this puts the terminal into “keyboard_transmit” mode by emitting the keypad_xmit (smkx)
capability. On exit, it emits keypad_local (rmkx).

On an IBM-PC keyboard with numeric keypad of terminal-type xterm, with numlock off, the lower-left
diagonal key transmits sequence \ \x1b [F, translated to Terminal attribute KEY_END.

However, upon entering keypad (), \\x1b [OF is transmitted, translating to KEY_ LL (lower-left key),
allowing you to determine diagonal direction keys.

8.6. terminal.py 65

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/tty.html#tty.setcbreak
https://docs.python.org/3/library/tty.html#tty.setcbreak
https://docs.python.org/3/library/tty.html#tty.setcbreak
https://docs.python.org/3/library/termios.html#module-termios
https://docs.python.org/3/library/sys.html#sys.__stdin__
https://docs.python.org/3/library/sys.html#sys.__stdin__
https://docs.python.org/3/library/tty.html#tty.setcbreak
http://www.unixwiz.net/techtips/termios-vmin-vtime.html
http://www.unixwiz.net/techtips/termios-vmin-vtime.html
https://docs.python.org/3/library/tty.html#tty.setraw

Blessed Documentation, Release 1.18.0

inkey (timeout=None, esc_delay=0.35)
Read and return the next keyboard event within given timeout.

Generally, this should be used inside the raw () context manager.
Parameters

* timeout (f1oat)— Number of seconds to wait for a keystroke before returning. When
None (default), this method may block indefinitely.

* esc_delay (float) — To distinguish between the keystroke of KEY_ESCAPE, and
sequences beginning with escape, the parameter esc_delay specifies the amount of
time after receiving escape (chr (27)) to seek for the completion of an application key
before returning a Key st roke instance for KEY_ESCAPE.

Return type Keystroke.

Returns Keystroke, which may be empty (u'"') if timeout is specified and keystroke is
not received.

Note: When used without the context manager chreak (), or raw (), sys.__stdin___ remains
line-buffered, and this function will block until the return key is pressed!

class WINSZ (ws_row, ws_col, ws_xpixel, ws_ypixel)
Structure represents return value of termios.TIOCGWINSZ.

WS_row
rows, in characters

ws_col
columns, in characters

ws_xpixel
horizontal size, pixels

ws_ypixel
vertical size, pixels

Create new instance of WINSZ(ws_row, ws_col, ws_xpixel, ws_ypixel)

_CUR_TERM = None

66 Chapter 8. API Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/sys.html#sys.__stdin__

CHAPTER
NINE

PROJECT

Bugs or suggestions? Visit the issue tracker and file an issue. We welcome your bug reports and feature suggestions!

Are you stuck and need support? Give stackoverflow a try. If you’re still having trouble, we’d like to hear about it!
Open an issue in the issue tracker with a well-formed question.

Would you like to contribute? That’s awesome! Pull Requests are always welcome!

9.1 Fork

Blessed is a fork of blessings. Apologies for the fork, I just couldn’t get the Keyboard, and later Location or Measuring
code accepted upstream after two major initiatives, the effort was better spent in a fork, where the code is accepted.

Furthermore, a project in the node.js language of the same name, blessed, is not related, or a fork of each other in any
way.

9.2 License

Blessed is under the MIT License. See the LICENSE file. Please enjoy!

9.3 Running Tests

Install and run tox:

Py.test is used as the test runner, and with the tox target supporting positional arguments, you may for example use
looponfailing with python 3.7, stopping at the first failing test case, and looping (retrying) after a filesystem save is
detected:

The test runner (tox) ensures all code and documentation complies with standard python style guides, pep8 and
pep257, as well as various static analysis tools.

67

https://github.com/jquast/blessed/issues/
https://stackoverflow.com/
https://github.com/jquast/blessed/issues/
https://github.com/erikrose/blessings
https://github.com/chjj/blessed
https://github.com/jquast/blessed/blob/master/LICENSE
https://docs.pytest.org/en/3.0.1/xdist.html#running-tests-in-looponfailing-mode

Blessed Documentation, Release 1.18.0

Warning: When you contribute a new feature, make sure it is covered by tests.

Likewise, some bug fixes should include a test demonstrating the bug.

9.4

Further Reading

As a developer’s API, blessed is often bundled with frameworks and toolsets that dive deeper into Terminal /O
programming than Terminal offers. Here are some recommended readings to help you along:

The terminfo(5) manpage of your preferred posix-like operating system. The capabilities available as attributes
of Terminal are directly mapped to those listed in the column Cap-name.

The termios(3) of your preferred posix-like operating system.
The TTY demystified by Linus Akesson.
A Brief Introduction to Termios by Nelson Elhage.

Richard Steven’s Advance Unix Programming (“AUP”) provides two very good chapters, “Terminal I/O” and
“Pseudo Terminals”.

GNU’s The Termcap Manual by Richard M. Stallman.

Chapter 4 of CUNY’s course material for Introduction to System Programming, by Stewart Weiss
Chapter 11 of the IEEE Open Group Base Specifications Issue 7, “General Terminal Interface”
The GNU C Library documentation, section Low-Level Terminal Interface

The source code of many popular terminal emulators. If there is ever any question of “the meaning of a terminal
capability”, or whether or not your preferred terminal emulator actually handles them, read the source! Many
modern terminal emulators are now based on libvte.

The source code of the tty(4), pty(7), and the given “console driver” for any posix-like operating system. If you
search thoroughly enough, you will eventually discover a terminal sequence decoder, usually a case switch
that translates \x1b [Om into a “reset color” action towards the video driver. Though tty.c linked here is
probably not the most interesting, it can get you started:

FreeBSD
OpenBSD

Ilumos (Solaris)
— Minix
— Linux

Thomas E. Dickey has been maintaining xterm, as well as a primary maintainer of many related packages such
as ncurses for quite a long while. His consistent, well-documented, long-term dedication to xterm, curses, and
the many related projects is world-renown.

termcap & terminfo (O’Reilly Nutshell) by Linda Mui, Tim O’Reilly, and John Strang.

Note that System-V systems, also known as Unix98 (SunOS, HP-UX, AIX and others) use a Streams interface.
On these systems, the ioctl(2) interface provides the PUSH and POP parameters to communicate with a Streams
device driver, which differs significantly from Linux and BSD.

Many of these systems provide compatible interfaces for Linux, but they may not always be as complete as the
counterpart they emulate, most especially in regards to managing pseudo-terminals.

68

Chapter 9. Project

http://linux.die.net/man/5/terminfo
http://linux.die.net/man/3/termios
http://www.linusakesson.net/programming/tty/index.php
https://blog.nelhage.com/2009/12/a-brief-introduction-to-termios/
https://www.amazon.com/exec/obidos/ISBN=0201563177/wrichardstevensA/
https://www.gnu.org/software/termutils/manual/termcap-1.3/html_mono/termcap.html
http://compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/chapter_04.pdf
http://compsci.hunter.cuny.edu/~sweiss/
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html
http://www.gnu.org/software/libc/manual/html_mono/libc.html#toc-Low_002dLevel-Terminal-Interface-1
https://github.com/GNOME/vte
http://linux.die.net/man/4/tty
http://linux.die.net/man/7/pty
https://github.com/freebsd/freebsd/blob/master/sys/kern/tty.c
http://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/kern/tty.c?content-type=text/plain
https://github.com/illumos/illumos-gate/blob/master/usr/src/uts/common/io/tty_common.c
https://github.com/Stichting-MINIX-Research-Foundation/minix/blob/master/minix/drivers/tty/tty/tty.c
https://github.com/torvalds/linux/blob/master/drivers/tty/n_tty.c
https://invisible-island.net/
https://invisible-island.net/xterm/xterm.html
https://invisible-island.net/ncurses/ncurses.html
https://www.amazon.com/termcap-terminfo-OReilly-Nutshell-Linda/dp/0937175226
https://en.wikipedia.org/wiki/Single_UNIX_Specification
https://en.wikipedia.org/wiki/STREAMS
https://pubs.opengroup.org/onlinepubs/009695399/functions/ioctl.html

Blessed Documentation, Release 1.18.0

9.5 The misnomer of ANSI

When people say ‘ANST’, they are discussing:
e Standard ECMA-48: Control Functions for Coded Character Sets

e ANSI X3.64 from 1981, when the American National Standards Institute adopted the ECMA-48 as standard,
which was later withdrawn in 1997 (so in this sense it is not an ANSI standard).

e The ANSIL.SYS driver provided in MS-DOS and clones. The popularity of the IBM Personal Computer and
MS-DOS of the era, and its ability to display colored text further populated the idea that such text “is ANSI”.

* The various code pages used in MS-DOS Personal Computers, providing “block art” characters in the 8th bit
(int 127-255), paired with ECMA-48 sequences supported by the MS-DOS ANSI.SYS driver to create artwork,
known as ANSI art.

¢ The ANSI terminal database entry and its many descendants in the terminfo database. This is mostly due to
terminals compatible with SCO UNIX, which was the successor of Microsoft’s Xenix, which brought some
semblance of the Microsoft DOS ANSI.SYS driver capabilities.

 Select Graphics Rendition (SGR) on vt100 clones, which include many of the common sequences in ECMA-48.

* Any sequence started by the Control-Sequence-Inducer is often mistakenly termed as an “ANSI Escape Se-
quence” though not appearing in ECMA-48 or interpreted by the ANSL.SYS driver. The adjoining phrase
“Escape Sequence” is so termed because it follows the ASCII character for the escape key (ESC, \x1b).

9.5. The misnomer of ANSI 69

http://www.ecma-international.org/publications/standards/Ecma-048.htm
https://en.wikipedia.org/wiki/ANSI_escape_code#History
https://www.ansi.org/
http://www.ecma-international.org/publications/standards/Ecma-048.htm
http://www.kegel.com/nansi/
http://www.ecma-international.org/publications/standards/Ecma-048.htm
http://www.kegel.com/nansi/
https://16colo.rs/
https://invisible-island.net/ncurses/terminfo.src.html
http://www.kegel.com/nansi/
https://vt100.net/docs/vt510-rm/SGR
http://www.ecma-international.org/publications/standards/Ecma-048.htm
https://invisible-island.net/xterm/ctlseqs/ctlseqs.html#h2-Controls-beginning-with-ESC
http://www.ecma-international.org/publications/standards/Ecma-048.htm
http://www.kegel.com/nansi/

Blessed Documentation, Release 1.18.0

70

Chapter 9. Project

CHAPTER
TEN

1.18

1.17

VERSION HISTORY

introduced: type annotations, #192 by dlax.
bugfix: do not fail when sys.stdin is unset, #195 by Olen

docfix: correct “Bottom of the screen” example to use end="" and document about it in location.rst, #188
by pyfisch

introduced: Hyperlinks, method 1ink (), #116.

introduced: 24-bit color support, detected by term.number_of_colors == 1 << 24, and 24-bit
color foreground method color_rgb () and background method on_color_rgb (), as well as 676
common X11 color attribute names are now possible, such as term.aquamarine_on_wheat, #60.

introduced: term.move_xy, recommended over built-in move capability, as the argument order, (x,
y) matches the return value of get_ Iocation (), and all other common graphics library calls, #65.

introduced: move_up (), move_down (), Terminal .move_left (), move_right () which are
strings that move the cursor one cell in the respective direction, are now also callables for moving n cells
to the given direction, such as term.move_right (9).

introduced: pixel_width and pixel_height for libsixel support or general curiosity.

introduced: formatter () which returns callable formatters for valid text formatters such as ‘red’ or
‘bold_on_red’, returning a NullCallableString if passed an invalid text formatter.

bugfix: prevent ValueError: I/0 operation on closed file on sys.stdin in multi-
processing environments, where the keyboard wouldn’t work, anyway.

bugfix: prevent error condition, ValueError: underlying buffer has been detached
in rare conditions where sys.__stdout__ has been detached in test frameworks. #126.

bugfix: off-by-one error in get_ location (), now accounts for $1 in cursor_report, #94.

bugfix split_seqgs () and related functions failed to match when the color index was greater than 15,
#101.

bugfix: Context Managers, fullscreen (), hidden cursor (), and keypad () now flush the
stream after writing their sequences.

bugfix: chr (127), \x7f has changed from keycode term.DELETE to the more common match,
term.BACKSPACE, #115 by jwezel.

bugfix: ensure FormattingOtherString may be pickled.

bugfix: Use UTF -8 for keyboard if input encoding cannot be determined.

71

https://github.com/jquast/blessed/issues/192/
https://github.com/dlax
https://github.com/jquast/blessed/issues/195/
https://github.com/Olen
https://github.com/jquast/blessed/issues/188/
https://github.com/pyfisch
https://github.com/jquast/blessed/issues/116/
https://github.com/jquast/blessed/issues/60/
https://github.com/jquast/blessed/issues/65/
https://github.com/jquast/blessed/issues/126/
https://github.com/jquast/blessed/issues/94/
https://github.com/jquast/blessed/issues/101/
https://github.com/jquast/blessed/issues/115/
https://github.com/jwezel

Blessed Documentation, Release 1.18.0

1.16

1.15

1.14

1.13

1.12

1.11

deprecated: the curses move () capability is no longer recommended, suggest to use move_xy (), which
matches the return value of get__Iocation ().

deprecated: superscript, subscript, shadow, and dim are no longer “compoundable” with col-
ors, such as in phrase Terminal .blue_subscript ('a'). These attributes are not typically sup-
ported, anyway. Use Unicode text or 256 or 24-bit color codes instead.

deprecated: additional key names, such as KEY_TAB, are no longer “injected” into the curses module
namespace.

bugfix: briefly tried calling curses.setupterm() with os.devnull as the file descriptor, reverted.
#59.

deprecated: inkey () no longer raises RuntimeError when st ream is not a terminal, programs using
inkey () to block indefinitely if a keyboard is not attached. #69.

deprecated: using argument _intr_continue to method kbhit (), behavior is as though such value
is always True since 1.9.

bugfix: Now imports on 3.10+
bugfix: Fix detection of shift+arrow keys when using tmux. #178.

enhancement: Instantiate SequenceTextWrapper only once in wrap (). #184.

introduced: Windows support?! PR #110 by avylove.

enhancement: disable timing integration tests for keyboard routines.
enhancement: Support python 3.7. PR #102.

enhancement: Various fixes to test automation PR #108

bugfix: wrap () misbehaved for text containing newlines, #74.
bugfix: TypeError when using PYTHONOPTIMIZE=2 environment variable, #84.
bugfix: define blessed.__version__ value, #92.

bugfix: detect sequences \x1b [0K and \x1b2K, #95.

enhancement: split_seqgs () introduced, and 4x cost reduction in related sequence-aware functions,
#29.

deprecated: blessed.sequences.measure_length function superseded by iter_parse () if
necessary.

deprecated: warnings about “binary-packed capabilities” are no longer emitted on strange terminal types,
making best effort.

enhancement: get_location () returns the (row, col) position of the cursor at the time of call for
attached terminal.

enhancement: a keyboard now detected as stdin when streamis sys.stderr.

72

Chapter 10. Version History

https://docs.python.org/3/library/curses.html#curses.setupterm
https://github.com/jquast/blessed/issues/59/
https://github.com/jquast/blessed/issues/69/
https://github.com/jquast/blessed/issues/178/
https://github.com/jquast/blessed/issues/184/
https://github.com/jquast/blessed/pull/110/
https://github.com/avylove
https://github.com/jquast/blessed/pull/102/
https://github.com/jquast/blessed/pull/108/
https://github.com/jquast/blessed/issues/74/
https://github.com/jquast/blessed/issues/84/
https://github.com/jquast/blessed/issues/92/
https://github.com/jquast/blessed/issues/95/
https://github.com/jquast/blessed/issues/29/
https://docs.python.org/3/library/sys.html#sys.stderr

Blessed Documentation, Release 1.18.0

1.10

1.9

1.8

enhancement: inkey () can return more quickly for combinations such as Alt + Z when
MetaSendsEscape is enabled, #30.

enhancement: FormattingString may now be nested, such as t.red('red', t.
underline ('rum')), #61

workaround: provide sc and rc for Terminals of kind="ansi"', repairing location () #44.

bugfix: length of simple SGR reset sequence \x1b [m was not correctly determined on all terminal types,
#45.

deprecated: _intr_continue arguments introduced in 1.8 are now marked deprecated in 1.10: begin-
ning with python 3.5, the default behavior is as though this argument is always True, PEP-475, blessed
does the same.

enhancement: break_long_words now supported by Terminal .wrap ()

Ignore curses.error message 'tparm() returned NULL': this occurs on win32 or other plat-
forms using a limited curses implementation, such as PDCurses, where curses . tparm () is not imple-
mented, or no terminal capability database is available.

Context manager keypad () emits sequences that enable “application keys” such as the diagonal keys on
the numpad. This is equivalent to curses.window.keypad ().

bugfix: translate keypad application keys correctly.
enhancement: no longer depend on the ‘2to3’ tool for python 3 support.

enhancement: allow civis and cnorm (hide_cursor, normal_hide) to work with terminal-type ansi by
emulating support by proxy.

enhancement: new public attribute: kind: the very same as given Terminal.__init__ .kind key-
word argument. Or, when not given, determined by and equivalent to the TERM Environment variable.

enhancement: export keyboard-read function as public method getch (), so that it may be overridden by
custom terminal implementers.

enhancement: allow inkey () and kbhit () to return early when interrupted by signal by passing argu-
ment _intr_ continue=False.

enhancement: allow hpa and vpa (move_x, move_y) to work on tmux(1) or screen(1) by emulating sup-
port by proxy.

enhancement: add rstrip () and Istrip (), strips both sequences and trailing or leading whitespace,
respectively.

enhancement: include wcwidth library support for Iength (): the printable width of many kinds of CJK
(Chinese, Japanese, Korean) ideographs and various combining characters may now be determined.

enhancement: better support for detecting the length or sequences of externally-generated ecma-48 codes
when using xtermor aixterm.

bugfix: when locale.getpreferredencoding () returns empty string or an encoding that is not
valid for codecs.getincrementaldecoder, fallback to ASCII and emit a warning.

bugfix: ensure FormattingString and ParameterizingString may be pickled.

bugfix: allow ~.inkey and related to be called without a keyboard.

73

https://github.com/jquast/blessed/issues/30/
https://github.com/jquast/blessed/issues/61/
https://github.com/jquast/blessed/issues/44/
https://github.com/jquast/blessed/issues/45/
https://www.python.org/dev/peps/pep-0475/
https://docs.python.org/3/library/curses.html#curses.error
https://www.lfd.uci.edu/~gohlke/pythonlibs/#curses
https://docs.python.org/3/library/curses.html#curses.tparm
https://docs.python.org/3/library/curses.html#curses.window.keypad
https://pypi.org/project/wcwidth/
https://docs.python.org/3/library/locale.html#locale.getpreferredencoding

Blessed Documentation, Release 1.18.0

1.7

change: term.keyboard_fd is set None if stream or sys.stdout is not a tty, making term.
inkey (), term.cbreak (), term.raw (), no-op.

bugfix: \x1bOH (KEY_HOME) was incorrectly mapped as KEY_LEFT.

Forked github project erikrose/blessings to jquast/blessed, this project was previously known as blessings
version 1.6 and prior.

introduced: context manager cbreak (), which is equivalent to entering terminal state by tty.
setcbreak () and returning on exit, as well as the lesser recommended raw (), pairing from tty.
setraw ().

introduced: inkey (), which will return one or more characters received by the keyboard as a unicode
sequence, with additional attributes code and name. This allows application keys (such as the up arrow,
or home key) to be detected. Optional value t imeout allows for timed poll.

introduced: center (), rjust (), 1just (), allowing text containing sequences to be aligned to de-
tected horizontal screen width, or by width specified.

introduced: wrap () method. Allows text containing sequences to be word-wrapped without breaking
mid-sequence, honoring their printable width.

introduced: strip (), strips all sequences and whitespace.
introduced: strip segs () strip only sequences.

introduced: rstrip () and Istrip () strips both sequences and trailing or leading whitespace, respec-
tively.

bugfix: cannot call curses.setupterm() more than once per process (from Terminal.
__init__ ()): Previously, blessed pretended to support several instances of different Terminal kind,
but was actually using the kind specified by the first instantiation of Terminal. A warning is now
issued. Although this is misbehavior is still allowed, a warnings.WarningMessage is now emitted
to notify about subsequent terminal misbehavior.

bugfix: resolved issue where number._of_colors fails when does_styling is False. Resolves
issue where piping tests output would fail.

bugfix: warn and set does_styling to False when the given kind is not found in the terminal
capability database.

bugfix: allow unsupported terminal capabilities to be callable just as supported capabilities, so that the
return value of color(n) may be called on terminals without color capabilities.

bugfix: for terminals without underline, such as vt220, term.underline ('text') would emit
'"text' + term.normal. Now itemits only 'text"'.

enhancement: some attributes are now properties, raise exceptions when assigned.
enhancement: pypy is now a supported python platform implementation.
enhancement: removed pokemon curses.error exceptions.

enhancement: do not ignore curses.error exceptions, unhandled curses errors are legitimate errors
and should be reported as a bug.

enhancement: converted nose tests to pytest, merged travis and tox.

enhancement: pytest fixtures, paired with anew @as_subprocess decorator are used to test a multitude
of terminal types.

enhancement: test accessories @as_subprocess resolves various issues with different terminal types
that previously went untested.

74

Chapter 10. Version History

https://github.com/erikrose/blessings
https://github.com/jquast/blessed
https://docs.python.org/3/library/tty.html#tty.setcbreak
https://docs.python.org/3/library/tty.html#tty.setcbreak
https://docs.python.org/3/library/tty.html#tty.setraw
https://docs.python.org/3/library/tty.html#tty.setraw
https://docs.python.org/3/library/curses.html#curses.setupterm
https://docs.python.org/3/library/curses.html#curses.error

Blessed Documentation, Release 1.18.0

1.6

1.5.1

1.5

14

1.3

1.2

deprecation: python2.5 is no longer supported (as tox does not supported).

Add does_styling. This takes force_styling into account and should replace most uses of
is_a_ tty.

Make is_a_ tty a read-only property like does styling. Writing to it never would have done
anything constructive.

Add fullscreen () and hidden_cursor () to the auto-generated docs.

Clean up fabfile, removing the redundant test command.

Add Travis support.

Make python setup.py test work without spurious errors on 2.6.
Work around a tox parsing bug in its config file.

Make context managers clean up after themselves even if there’s an exception (Vitja Makarov #29
<https://github.com/erikrose/blessings/pull/29>).

Parameterizing a capability no longer crashes when there is no tty (<Vitja Makarov #31
<https://github.com/erikrose/blessings/pull/31>)

Add syntactic sugar and documentation for enter_fullscreenand exit_fullscreen.
Add context managers fullscreen () and hidden cursor ().

Now you can force a Terminal to never to emit styles by passing keyword argument
force_styling=None.

Add syntactic sugar for cursor visibility control and single-space-movement capabilities.

Endorse the Iocation () context manager for restoring cursor position after a series of manual move-
ments.

Fix a bug in which Iocation () that wouldn’t do anything when passed zeros.

Allow tests to be run with python setup.py test.

Added number_of _colors, which tells you how many colors the terminal supports.

Made color(n)and on_coloxr(n) callable to wrap a string, like the named colors can. Also, make them
both fall back to the setf and setb capabilities (like the named colors do) if the termcap entries for
setaf and setab are not available.

Allowed color to act as an unparametrized string, not just a callable.

Made height and width examine any passed-in stream before falling back to stdout (This rarely if ever
affects actual behavior; it’s mostly philosophical).

Made caching simpler and slightly more efficient.
Got rid of a reference cycle between Terminal and FormattingString.

Updated docs to reflect that terminal addressing (as in Location ()) is 0-based.

75

Blessed Documentation, Release 1.18.0

1.1

1.0

Added support for Python 3! We need 3.2.3 or greater, because the curses library couldn’t decide whether
to accept strs or bytes before that (https://bugs.python.org/issue10570).

Everything that comes out of the library is now unicode. This lets us support Python 3 without making a
mess of the code, and Python 2 should continue to work unless you were testing types (and badly). Please
file a bug if this causes trouble for you.

Changed to the MIT License for better world domination.
Added Sphinx docs.

Added nicely named attributes for colors.

Introduced compound formatting.

Added wrapper behavior for styling and colors.

Let you force capabilities to be non-empty, even if the output stream is not a terminal.
Added is_a_tty to determine whether the output stream is a terminal.

Sugared the remaining interesting string capabilities.

Allow Iocation () to operate on just an X or y coordinate.

Extracted Blessed from nose-progressive.

76

Chapter 10. Version History

https://bugs.python.org/issue10570
https://pypi.org/project/nose-progressive/

CHAPTER
ELEVEN

INDEXES

* genindex

¢ modindex

77

Blessed Documentation, Release 1.18.0

78

Chapter 11. Indexes

b

blessed

.color,45
blessed.
blessed.
blessed.
blessed.
blessed.

colorspace, 47
formatters, 48
keyboard, 52
sequences, 54
terminal, 57

PYTHON MODULE INDEX

79

Blessed Documentation, Release 1.18.0

80

Python Module Index

Symbols

_CURSES_KEYCODE_ADDINS
blessed.keyboard), 53
_CUR_TERM (in module blessed.terminal), 66

(in module

__call__ () (FormattingOtherString method), 50

__call__ () (FormattingString method), 49

_ call__ () (NullCallableString method), 50

__call__ () (ParameterizingProxyString method), 49

__call__ () (ParameterizingString method), 48

__getattr__ () (Terminal method), 57

__new___() (Keystroke static method), 52

_alternative_left_right () (in module
blessed.keyboard), 53

_handle_long_word() (SequenceTlextWrapper

method), 56
_make_colors () (in module blessed.formatters), 48
_wrap_chunks () (SequenceTextWrapper method), 56

B

blessed.color
module, 45
blessed.colorspace
module, 47
blessed.formatters
module, 48
blessed.keyboard
module, 52
blessed.sequences
module, 54
blessed.terminal
module, 57

C

cbreak () (Terminal method), 65
center () (Sequence method), 54
center () (Terminal method), 62
code () (Keystroke property), 52
color () (Terminal property), 60
color_distance_algorithm()
erty), 62
color_rgb () (Terminal method), 60
COLORS (in module blessed.formatters), 48

(Terminal prop-

INDEX

COMPOUNDABLES (in module blessed.formatters), 48
CURSES_KEYCODE_OVERRIDE_MIXIN (in module
blessed.keyboard), 53

D

DEFAULT_SEQUENCE_MIXIN
blessed.keyboard), 53
dist_cie2000 () (in module blessed.color), 47
dist_cie76 () (in module blessed.color), 46
dist_cie94 () (in module blessed.color), 46
dist_rgb () (in module blessed.color), 46
dist_rgb_weighted () (in module blessed.color),
46
does_styling () (Terminal property), 57

F

formatter () (Terminal method), 61
FormattingOtherString

blessed.formatters), 49
FormattingString (class in blessed.formatters), 49
fullscreen () (Terminal method), 59

G

(in module

(class in

get_keyboard_codes () (in module
blessed.keyboard), 52

get_keyboard_sequences () (in module
blessed.keyboard), 52

get_location () (Terminal method), 58

get_proxy_string () (in module

blessed.formatters), 50
getch () (Terminal method), 64

Fl

height () (Terminal property), 58
hidden_cursor () (Terminal method), 59

inkey () (Terminal method), 65

is_a_tty () (Terminal property), 58
is_sequence () (Keystroke property), 52
iter_parse () (in module blessed.sequences), 56

81

Blessed Documentation, Release 1.18.0

K

kbhit () (Terminal method), 64

keypad () (Terminal method), 65
Keystroke (class in blessed.keyboard), 52
kind () (Terminal property), 57

L

length () (Sequence method), 54
length () (Terminal method), 63
link () (Terminal method), 61
1just () (Sequence method), 54
1just () (Terminal method), 62
location () (Terminal method), 58
lstrip () (Sequence method), 55
lstrip () (Terminal method), 63

M

measure_length () (in module blessed.sequences),
56
module
blessed.
blessed.
blessed.
blessed.

color, 45
colorspace, 47
formatters, 48
keyboard, 52
blessed.sequences, 54
blessed.terminal, 57
move_down () (Terminal property), 60
move_left () (Terminal property), 60
move_right () (Terminal property), 60
move_up () (Terminal property), 60
move_xy () (Terminal method), 59
move_yx () (Terminal method), 60

N

name () (Keystroke property), 52

normal () (Terminal property), 61

NullCallableString (class in blessed.formatters),
50

number_of_colors () (Terminal property), 62

O

on_color () (Terminal property), 60
on_color_rgb () (Terminal method), 60

P

padd () (Sequence method), 55

R

raw () (Terminal method), 65

resolve_attribute () (in module
blessed.formatters), 51
resolve_capability () (in module

blessed.formatters), 51
resolve_color () (in module blessed.formatters), 51
RGB_256TABLE (in module blessed.colorspace), 47
rgb_downconvert () (Terminal method), 61
rgb_to_lab () (in module blessed.color), 45
rgb_to_xyz () (in module blessed.color), 45
RGBColor (class in blessed.colorspace), 47
rjust () (Sequence method), 54
rjust () (Terminal method), 62
rstrip () (Sequence method), 55
rstrip () (Terminal method), 63

S

Sequence (class in blessed.sequences), 54

SequenceTextWrapper (class in blessed.sequences),
55

split_compound () (in module blessed.formatters),
50

split_seqgs () (Terminal method), 64

stream () (Terminal property), 62

strip () (Sequence method), 55

strip () (Terminal method), 63

strip_seqgs () (Sequence method), 55

strip_seqgs () (Terminal method), 63

T

Terminal (class in blessed.terminal), 57

U

ungetch () (Terminal method), 64

W

width () (Terminal property), 58
WINSZ (class in blessed.terminal), 66
wrap () (Terminal method), 64
ws_col (WINSZ attribute), 66
ws_row (WINSZ attribute), 66
ws_xpixel (WINSZ attribute), 66
ws_ypixel (WINSZ attribute), 66

X

ParameterizingProxyString (class in X11_COLORNAMES_TO_RGB (in module
blessed.formatters), 48 blessed.colorspace), 47

ParameterizingString (class in xyz_to_lab () (in module blessed.color), 45
blessed.formatters), 48

pixel_height () (Terminal property), 58

pixel_width () (Terminal property), 58

82 Index

	Introduction
	Examples
	Requirements
	Brief Overview
	Before And After

	Terminal
	Capabilities
	Compound Formatting
	Clearing The Screen
	Hyperlinks
	Styles
	Full-Screen Mode
	Pipe Savvy

	Colors
	24-bit Colors
	256 Colors
	16 Colors
	Monochrome

	Keyboard
	inkey()
	Keycodes
	delete
	Alt/meta

	Location
	Example
	Context Manager
	Finding The Cursor

	Measuring
	Resizing

	Examples
	bounce.py
	cnn.py
	detect-multibyte.py
	editor.py
	keymatrix.py
	on_resize.py
	plasma.py
	progress_bar.py
	resize.py
	tprint.py
	worms.py
	x11_colorpicker.py

	API Documentation
	color.py
	colorspace.py
	formatters.py
	keyboard.py
	sequences.py
	terminal.py

	Project
	Fork
	License
	Running Tests
	Further Reading
	The misnomer of ANSI

	Version History
	Indexes
	Python Module Index
	Index

