

Welcome to Blessed documentation!

Contents:

	Introduction
	Brief Overview

	Before And After

	Requirements

	Further Documentation

	Bugs, Contributing, Support

	License

	Forked

	Overview
	Styling and Formatting
	Capabilities

	Colors

	Colorless Terminals

	Compound Formatting

	Moving The Cursor

	Finding The Cursor
	Moving Temporarily

	Moving Permanently

	One-Notch Movement

	Height And Width

	Clearing The Screen

	Full-Screen Mode

	Pipe Savvy

	Sequence Awareness

	Keyboard Input
	cbreak

	inkey

	keyboard codes

	Examples
	editor.py

	keymatrix.py

	on_resize.py

	progress_bar.py

	tprint.py

	worms.py

	resize.py

	detect-multibyte.py

	Further Reading

	Growing Pains
	8 and 16 colors

	Where is brown, purple, or grey?
	white-on-black

	Bold is bright
	History of bold as “wide stroke”

	Enforcing white-on-black

	Beware of customized color schemes
	256 colors can avoid customization

	Monochrome and reverse

	Multibyte Encodings and Code pages

	Alt or meta sends Escape

	Backspace sends delete

	The misnomer of ANSI

	API Documentation
	terminal.py

	formatters.py

	keyboard.py

	sequences.py

	Contributing
	Developing
	Running Tests

	Test Coverage

	Style and Static Analysis

	Version History

Indexes

	Index

	Module Index

 [image: Travis Continuous Integration]
 [https://travis-ci.org/jquast/blessed/][image: TeamCity Build status]
 [https://teamcity-master.pexpect.org/viewType.html?buildTypeId=Blessed_BuildHead&branch_Blessed=%3Cdefault%3E&tab=buildTypeStatusDiv][image: Coveralls Code Coverage]
 [https://coveralls.io/github/jquast/blessed?branch=master][image: Latest Version]
 [https://pypi.python.org/pypi/blessed][image: Downloads]
 [https://pypi.python.org/pypi/blessed][image: Join Chat]
 [https://gitter.im/jquast/blessed]
Introduction

Blessed is a thin, practical wrapper around terminal capabilities in Python.

Coding with Blessed looks like this…

from blessed import Terminal

t = Terminal()

print(t.bold('Hi there!'))
print(t.bold_red_on_bright_green('It hurts my eyes!'))

with t.location(0, t.height - 1):
 print(t.center(t.blink('press any key to continue.')))

with t.cbreak():
 inp = t.inkey()
print('You pressed ' + repr(inp))

Brief Overview

Blessed is a more simplified wrapper around curses [https://docs.python.org/3/library/curses.html], providing :

	Styles, color, and maybe a little positioning without necessarily
clearing the whole screen first.

	Works great with standard Python string formatting.

	Provides up-to-the-moment terminal height and width, so you can respond to
terminal size changes.

	Avoids making a mess if the output gets piped to a non-terminal:
outputs to any file-like object such as StringIO, files, or pipes.

	Uses the terminfo(5) [http://invisible-island.net/ncurses/man/terminfo.5.html] database so it works with any terminal type
and supports any terminal capability: No more C-like calls to tigetstr [http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man3/tigetstr.3]
and tparm [http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man3/tparm.3].

	Keeps a minimum of internal state, so you can feel free to mix and match with
calls to curses or whatever other terminal libraries you like.

	Provides plenty of context managers to safely express terminal modes,
automatically restoring the terminal to a safe state on exit.

	Act intelligently when somebody redirects your output to a file, omitting
all of the terminal sequences such as styling, colors, or positioning.

	Dead-simple keyboard handling: safely decoding unicode input in your
system’s preferred locale and supports application/arrow keys.

	Allows the printable length of strings containing sequences to be
determined.

Blessed does not provide…

	Windows command prompt support. A PDCurses [http://www.lfd.uci.edu/~gohlke/pythonlibs/#curses] build of python for windows
provides only partial support at this time – there are plans to merge with
the ansi [https://github.com/tehmaze/ansi] module in concert with colorama [https://pypi.python.org/pypi/colorama] to resolve this. Patches
welcome [https://github.com/jquast/blessed/issues/18]!

Before And After

With the built-in curses [https://docs.python.org/3/library/curses.html] module, this is how you would typically
print some underlined text at the bottom of the screen:

from curses import tigetstr, setupterm, tparm
from fcntl import ioctl
from os import isatty
import struct
import sys
from termios import TIOCGWINSZ

If we want to tolerate having our output piped to other commands or
files without crashing, we need to do all this branching:
if hasattr(sys.stdout, 'fileno') and isatty(sys.stdout.fileno()):
 setupterm()
 sc = tigetstr('sc')
 cup = tigetstr('cup')
 rc = tigetstr('rc')
 underline = tigetstr('smul')
 normal = tigetstr('sgr0')
else:
 sc = cup = rc = underline = normal = ''

Save cursor position.
print(sc)

if cup:
 # tigetnum('lines') doesn't always update promptly, hence this:
 height = struct.unpack('hhhh', ioctl(0, TIOCGWINSZ, '\000' * 8))[0]

 # Move cursor to bottom.
 print(tparm(cup, height - 1, 0))

print('This is {under}underlined{normal}!'
 .format(under=underline, normal=normal))

Restore cursor position.
print(rc)

The same program with Blessed is simply:

from blessed import Terminal

term = Terminal()
with term.location(0, term.height - 1):
 print('This is' + term.underline('underlined') + '!')

Requirements

Blessed is tested with Python 2.7, 3.4, and 3.5 on Debian Linux, Mac, and
FreeBSD.

Further Documentation

More documentation can be found at http://blessed.readthedocs.org/en/latest/

Bugs, Contributing, Support

Bugs or suggestions? Visit the issue tracker [https://github.com/jquast/blessed/issues/] and file an issue.
We welcome your bug reports and feature suggestions!

Would you like to contribute? That’s awesome! We’ve written a
guide [http://blessed.readthedocs.org/en/latest/contributing.html]
to help you.

Are you stuck and need support? Give stackoverflow [http://stackoverflow.com/] a try. If
you’re still having trouble, we’d like to hear about it! Open an issue
in the issue tracker [https://github.com/jquast/blessed/issues/] with a well-formed question.

License

Blessed is under the MIT License. See the LICENSE file.

Forked

Blessed is a fork of blessings [https://github.com/erikrose/blessings].
Changes since 1.7 have all been proposed but unaccepted upstream.

Furthermore, a project in the node.js language of the same name [https://github.com/chjj/blessed] is not related, or a fork
of each other in any way.

Overview

Blessed provides just one top-level object: Terminal.
Instantiating a Terminal figures out whether you’re on a terminal at
all and, if so, does any necessary setup:

>>> term = Terminal()

After that, you can proceed to ask it all sorts of things about the terminal,
such as its size:

>>> term.height, term.width
(34, 102)

Its color support:

>>> term.number_of_colors
256

And use construct strings containing color and styling:

>>> term.green_reverse('ALL SYSTEMS GO')
'\x1b[32m\x1b[7mALL SYSTEMS GO\x1b[m'

Furthermore, the special sequences inserted with application keys
(arrow and function keys) are understood and decoded, as well as your
locale-specific encoded multibyte input, such as utf-8 characters.

Styling and Formatting

Lots of handy formatting codes are available as attributes on a
Terminal class instance. For example:

from blessed import Terminal

term = Terminal()

print('I am ' + term.bold + 'bold' + term.normal + '!')

These capabilities (bold, normal) are translated to their sequences, which
when displayed simply change the video attributes. And, when used as a
callable, automatically wraps the given string with this sequence, and
terminates it with normal.

The same can be written as:

print('I am' + term.bold('bold') + '!')

You may also use the Terminal instance as an argument for
the str.format`() method, so that capabilities can be displayed in-line
for more complex strings:

print('{t.red_on_yellow}Candy corn{t.normal} for everyone!'.format(t=term))

Capabilities

The basic capabilities supported by most terminals are:

	bold

	Turn on ‘extra bright’ mode.

	reverse

	Switch fore and background attributes.

	blink

	Turn on blinking.

	normal

	Reset attributes to default.

The less commonly supported capabilities:

	dim

	Enable half-bright mode.

	underline

	Enable underline mode.

	no_underline

	Exit underline mode.

	italic

	Enable italicized text.

	no_italic

	Exit italics.

	shadow

	Enable shadow text mode (rare).

	no_shadow

	Exit shadow text mode.

	standout

	Enable standout mode (often, an alias for reverse).

	no_standout

	Exit standout mode.

	subscript

	Enable subscript mode.

	no_subscript

	Exit subscript mode.

	superscript

	Enable superscript mode.

	no_superscript

	Exit superscript mode.

	flash

	Visual bell, flashes the screen.

Note that, while the inverse of underline is no_underline, the only way
to turn off bold or reverse is normal, which also cancels any custom
colors.

Many of these are aliases, their true capability names (such as ‘smul’ for
‘begin underline mode’) may still be used. Any capability in the terminfo(5) [http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man4/termios.3]
manual, under column Cap-name, may be used as an attribute of a
Terminal instance. If it is not a supported capability, or a non-tty
is used as an output stream, an empty string is returned.

Colors

Color terminals are capable of at least 8 basic colors.

	black

	red

	green

	yellow

	blue

	magenta

	cyan

	white

The same colors, prefixed with bright_ (synonymous with bold_),
such as bright_blue, provides 16 colors in total.

Prefixed with on_, the given color is used as the background color.
Some terminals also provide an additional 8 high-intensity versions using
on_bright, some example compound formats:

from blessed import Terminal

term = Terminal()

print(term.on_bright_blue('Blue skies!'))

print(term.bright_red_on_bright_yellow('Pepperoni Pizza!'))

You may also specify the color() index by number, which
should be within the bounds of value returned by
number_of_colors:

from blessed import Terminal

term = Terminal()

for idx in range(term.number_of_colors):
 print(term.color(idx)('Color {0}'.format(idx)))

You can check whether the terminal definition used supports colors, and how
many, using the number_of_colors property, which returns
any of 0, 8 or 256 for terminal types such as vt220, ansi, and
xterm-256color, respectively.

Colorless Terminals

If the terminal defined by the Environment variable TERM does not support
colors, these simply return empty strings. When used as a callable, the string
passed as an argument is returned as-is. Most sequences emitted to a terminal
that does not support them are usually harmless and have no effect.

Colorless terminals (such as the amber or green monochrome vt220) do not
support colors but do support reverse video. For this reason, it may be
desirable in some applications to simply select a foreground color, followed
by reverse video to achieve the desired background color effect:

from blessed import Terminal

term = Terminal()

print(term.green_reverse('some terminals standout more than others'))

Which appears as black on green on color terminals, but black text
on amber or green on monochrome terminals. Whereas the more declarative
formatter black_on_green would remain colorless.

Note

On most color terminals, bright_black is not invisible – it is
actually a very dark shade of gray!

Compound Formatting

If you want to do lots of crazy formatting all at once, you can just mash it
all together:

from blessed import Terminal

term = Terminal()

print(term.bold_underline_green_on_yellow('Woo'))

I’d be remiss if I didn’t credit couleur [https://pypi.python.org/pypi/couleur], where I probably got the idea for
all this mashing.

This compound notation comes in handy if you want to allow users to customize
formatting, just allow compound formatters, like bold_green, as a command
line argument or configuration item such as in the tprint.py
demonstration script.

Moving The Cursor

When you want to move the cursor, you have a few choices:

	location(x=None, y=None) context manager.

	move(row, col) capability.

	move_y(row) capability.

	move_x(col) capability.

Warning

The location() method receives arguments in
positional order (x, y), whereas the move() capability receives
arguments in order (y, x). Please use keyword arguments as a later
release may correct the argument order of location().

Finding The Cursor

We can determine the cursor’s current position at anytime using
get_location(), returning the current (y, x) location. This uses a
kind of “answer back” sequence that your terminal emulator responds to. If
the terminal may not respond, the timeout keyword
argument can be specified to return coordinates (-1, -1) after a blocking
timeout:

from blessed import Terminal

term = Terminal()

row, col = term.get_location(timeout=5)

if row < term.height:
 print(term.move_y(term.height) + 'Get down there!')

Moving Temporarily

A context manager, location() is provided to move the cursor
to an (x, y) screen position and restore the previous position upon exit:

from blessed import Terminal

term = Terminal()

with term.location(0, term.height - 1):
 print('Here is the bottom.')

print('This is back where I came from.')

Parameters to location() are the optional x and/or y
keyword arguments:

with term.location(y=10):
 print('We changed just the row.')

When omitted, it saves the cursor position and restore it upon exit:

with term.location():
 print(term.move(1, 1) + 'Hi')
 print(term.move(9, 9) + 'Mom')

Note

calls to location() may not be nested.

Moving Permanently

If you just want to move and aren’t worried about returning, do something like
this:

from blessed import Terminal

term = Terminal()
print(term.move(10, 1) + 'Hi, mom!')

	move

	Position the cursor, parameter in form of (y, x)

	move_x

	Position the cursor at given horizontal column.

	move_y

	Position the cursor at given vertical column.

One-Notch Movement

Finally, there are some parameterless movement capabilities that move the
cursor one character in various directions:

	move_left

	move_right

	move_up

	move_down

Note

move_down is often valued as \n, which additionally returns
the carriage to column 0, depending on your terminal emulator, and may
also destructively destroy any characters at the given position to the
end of margin.

Height And Width

Use the height and width properties to
determine the size of the window:

from blessed import Terminal

term = Terminal()
height, width = term.height, term.width
with term.location(x=term.width / 3, y=term.height / 3):
 print('1/3 ways in!')

These values are always current. To detect when the size of the window
changes, you may author a callback for SIGWINCH [https://en.wikipedia.org/wiki/SIGWINCH] signals:

import signal
from blessed import Terminal

term = Terminal()

def on_resize(sig, action):
 print('height={t.height}, width={t.width}'.format(t=term))

signal.signal(signal.SIGWINCH, on_resize)

wait for keypress
term.inkey()

Clearing The Screen

Blessed provides syntactic sugar over some screen-clearing capabilities:

	clear

	Clear the whole screen.

	clear_eol

	Clear to the end of the line.

	clear_bol

	Clear backward to the beginning of the line.

	clear_eos

	Clear to the end of screen.

Full-Screen Mode

If you’ve ever noticed a program, such as an editor, restores the previous
screen (such as your shell prompt) after exiting, you’re seeing the
enter_fullscreen and exit_fullscreen attributes in effect.

	enter_fullscreen

	Switch to alternate screen, previous screen is stored by terminal driver.

	exit_fullscreen

	Switch back to standard screen, restoring the same terminal state.

There’s also a context manager you can use as a shortcut:

from __future__ import division
from blessed import Terminal

term = Terminal()
with term.fullscreen():
 print(term.move_y(term.height // 2) +
 term.center('press any key').rstrip())
 term.inkey()

Pipe Savvy

If your program isn’t attached to a terminal, such as piped to a program
like less(1) or redirected to a file, all the capability attributes on
Terminal will return empty strings. You’ll get a nice-looking
file without any formatting codes gumming up the works.

If you want to override this, such as when piping output to less -r, pass
argument value True to the force_styling parameter.

In any case, there is a does_styling attribute that lets
you see whether the terminal attached to the output stream is capable of
formatting. If it is False, you may refrain from drawing progress
bars and other frippery and just stick to content:

from blessed import Terminal

term = Terminal()
if term.does_styling:
 with term.location(x=0, y=term.height - 1):
 print('Progress: [=======>]')
print(term.bold("60%"))

Sequence Awareness

Blessed may measure the printable width of strings containing sequences,
providing center(), ljust(), and
rjust() methods, using the terminal screen’s width as
the default width value:

from __future__ import division
from blessed import Terminal

term = Terminal()
with term.location(y=term.height // 2):
 print(term.center(term.bold('bold and centered')))

Any string containing sequences may have its printable length measured using
the length() method.

Additionally, a sequence-aware version of textwrap.wrap() [https://docs.python.org/3/library/textwrap.html#textwrap.wrap] is supplied as
class as method wrap() that is also sequence-aware, so now you
may word-wrap strings containing sequences. The following example displays a
poem word-wrapped to 25 columns:

from blessed import Terminal

term = Terminal()

poem = (term.bold_cyan('Plan difficult tasks'),
 term.cyan('through the simplest tasks'),
 term.bold_cyan('Achieve large tasks'),
 term.cyan('through the smallest tasks'))

for line in poem:
 print('\n'.join(term.wrap(line, width=25, subsequent_indent=' ' * 4)))

Sometimes it is necessary to make sense of sequences, and to distinguish them
from plain text. The split_seqs() method can allow us to
iterate over a terminal string by its characters or sequences:

from blessed import Terminal

term = Terminal()

phrase = term.bold('bbq')
print(term.split_seqs(phrase))

Will display something like, ['\x1b[1m', 'b', 'b', 'q', '\x1b(B', '\x1b[m']

Similarly, the method strip_seqs() may be used on a string to
remove all occurrences of terminal sequences:

from blessed import Terminal

term = Terminal()
phrase = term.bold_black('coffee')
print(repr(term.strip_seqs(phrase)))

Will display only 'coffee'

Keyboard Input

The built-in python function raw_input() does not return a value until
the return key is pressed, and is not suitable for detecting each individual
keypress, much less arrow or function keys.

Furthermore, when calling os.read() [https://docs.python.org/3/library/os.html#os.read] on input stream, only bytes are
received, which must be decoded to unicode using the locale-preferred encoding.
Finally, multiple bytes may be emitted which must be paired with some verb like
KEY_LEFT: blessed handles all of these special cases for you!

cbreak

The context manager cbreak() can be used to enter
key-at-a-time mode: Any keypress by the user is immediately consumed by read
calls:

from blessed import Terminal
import sys

term = Terminal()

with term.cbreak():
 # block until any single key is pressed.
 sys.stdin.read(1)

The mode entered using cbreak() is called
cbreak(3) [http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man3/cbreak.3] in curses:

The cbreak routine disables line buffering and erase/kill
character-processing (interrupt and flow control characters are unaffected),
making characters typed by the user immediately available to the program.

raw() is similar to cbreak, but not recommended.

inkey

The method inkey() combined with cbreak
completes the circle of providing key-at-a-time keyboard input with multibyte
encoding and awareness of application keys.

inkey() resolves many issues with terminal input by
returning a unicode-derived Keystroke instance. Its return value
may be printed, joined with, or compared like any other unicode strings, it
also provides the special attributes is_sequence,
code, and name:

from blessed import Terminal

term = Terminal()

print("press 'q' to quit.")
with term.cbreak():
 val = ''
 while val.lower() != 'q':
 val = term.inkey(timeout=5)
 if not val:
 # timeout
 print("It sure is quiet in here ...")
 elif val.is_sequence:
 print("got sequence: {0}.".format((str(val), val.name, val.code)))
 elif val:
 print("got {0}.".format(val))
 print('bye!')

Its output might appear as:

got sequence: ('\x1b[A', 'KEY_UP', 259).
got sequence: ('\x1b[1;2A', 'KEY_SUP', 337).
got sequence: ('\x1b[17~', 'KEY_F6', 270).
got sequence: ('\x1b', 'KEY_ESCAPE', 361).
got sequence: ('\n', 'KEY_ENTER', 343).
got /.
It sure is quiet in here ...
got sequence: ('\x1bOP', 'KEY_F1', 265).
It sure is quiet in here ...
got q.
bye!

A timeout value of None (default) will block
forever until a keypress is received. Any other value specifies the length of
time to poll for input: if no input is received after the given time has
elapsed, an empty string is returned. A timeout
value of 0 is non-blocking.

keyboard codes

When the is_sequence property tests True, the value
is a special application key of the keyboard. The code
attribute may then be compared with attributes of Terminal,
which are duplicated from those found in curs_getch(3) [http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man3/curs_getch.3], or those
constants [https://docs.python.org/3/library/curses.html#constants]
in curses [https://docs.python.org/3/library/curses.html#module-curses] beginning with phrase KEY_.

Some of these mnemonics are shorthand or predate modern PC terms and
are difficult to recall. The following helpful aliases are provided
instead:

	blessed

	curses

	note

	KEY_DELETE

	KEY_DC

	chr(127).

	KEY_TAB

	
	chr(9)

	KEY_INSERT

	KEY_IC

	

	KEY_PGUP

	KEY_PPAGE

	

	KEY_PGDOWN

	KEY_NPAGE

	

	KEY_ESCAPE

	KEY_EXIT

	

	KEY_SUP

	KEY_SR

	(shift + up)

	KEY_SDOWN

	KEY_SF

	(shift + down)

	KEY_DOWN_LEFT

	KEY_C1

	(keypad lower-left)

	KEY_UP_RIGHT

	KEY_A1

	(keypad upper-left)

	KEY_DOWN_RIGHT

	KEY_C3

	(keypad lower-left)

	KEY_UP_RIGHT

	KEY_A3

	(keypad lower-right)

	KEY_CENTER

	KEY_B2

	(keypad center)

	KEY_BEGIN

	KEY_BEG

	

The name property will prefer these
aliases over the built-in curses [https://docs.python.org/3/library/curses.html#module-curses] names.

The following are not available in the curses [https://docs.python.org/3/library/curses.html#module-curses] module, but are
provided for keypad support, especially where the keypad()
context manager is used with numlock on:

	KEY_KP_MULTIPLY

	KEY_KP_ADD

	KEY_KP_SEPARATOR

	KEY_KP_SUBTRACT

	KEY_KP_DECIMAL

	KEY_KP_DIVIDE

	KEY_KP_0 through KEY_KP_9

Examples

A few programs are provided with blessed to help interactively
test the various API features, but also serve as examples of using
blessed to develop applications.

These examples are not distributed with the package – they are
only available in the github repository. You can retrieve them
by cloning the repository, or simply downloading the “raw” file
link.

editor.py

https://github.com/jquast/blessed/blob/master/bin/editor.py

This program demonstrates using the directional keys and noecho input
mode. It acts as a (very dumb) fullscreen editor, with support for
saving a file, as well as including a rudimentary line-editor.

keymatrix.py

https://github.com/jquast/blessed/blob/master/bin/keymatrix.py

This program displays a “gameboard” of all known special KEY_NAME
constants. When the key is depressed, it is highlighted, as well
as displaying the unicode sequence, integer code, and friendly-name
of any key pressed.

on_resize.py

https://github.com/jquast/blessed/blob/master/bin/on_resize.py

This program installs a SIGWINCH signal handler, which detects
screen resizes while also polling for input, displaying keypresses.

This demonstrates how a program can react to screen resize events.

progress_bar.py

https://github.com/jquast/blessed/blob/master/bin/progress_bar.py

This program demonstrates a simple progress bar. All text is written
to stderr, to avoid the need to “flush” or emit newlines, and makes
use of the move_x (hpa) capability to “overstrike” the display a
scrolling progress bar.

tprint.py

https://github.com/jquast/blessed/blob/master/bin/tprint.py

This program demonstrates how users may customize FormattingString
styles. Accepting a string style, such as “bold” or “bright_red”
as the first argument, all subsequent arguments are displayed by
the given style. This shows how a program could provide
user-customizable compound formatting names to configure a program’s
styling.

worms.py

https://github.com/jquast/blessed/blob/master/bin/worms.py

This program demonstrates how an interactive game could be made
with blessed. It is similar to NIBBLES.BAS [https://github.com/tangentstorm/tangentlabs/blob/master/qbasic/NIBBLES.BAS]
or “snake” of early mobile platforms.

resize.py

https://github.com/jquast/blessed/blob/master/bin/resize.py

This program demonstrates the get_location() method,
behaving similar to resize(1) [https://github.com/joejulian/xterm/blob/master/resize.c]
: set environment and terminal settings to current window size.
The window size is determined by eliciting an answerback
sequence from the connecting terminal emulator.

detect-multibyte.py

https://github.com/jquast/blessed/blob/master/bin/detect-multibyte.py

This program also demonstrates how the get_location() method
can be used to reliably test whether the terminal emulator of the connecting
client is capable of rendering multibyte characters as a single cell.

Further Reading

As a developer’s API, blessed is often bundled with frameworks and toolsets
that dive deeper into Terminal I/O programming than Terminal offers.
Here are some recommended readings to help you along:

	terminfo(5) [http://invisible-island.net/ncurses/man/terminfo.5.html]
manpage of your preferred posix-like operating system. The capabilities
available as attributes of Terminal are directly mapped to those
listed in the column Cap-name.

	termios(4) [http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man4/termios.4]
of your preferred posix-like operating system.

	The TTY demystified [http://www.linusakesson.net/programming/tty/index.php]
by Linus Åkesson.

	A Brief Introduction to Termios [https://blog.nelhage.com/2009/12/a-brief-introduction-to-termios/] by
Nelson Elhage.

	Richard Steven’s Advance Unix Programming [http://www.amazon.com/exec/obidos/ISBN=0201563177/wrichardstevensA/]
(“AUP”) provides two very good chapters, “Terminal I/O” and
“Pseudo Terminals”.

	GNU’s The Termcap Manual [https://www.gnu.org/software/termutils/manual/termcap-1.3/html_mono/termcap.html]
by Richard M. Stallman.

	Chapter 4 [http://compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes/chapter_04.pdf]
of CUNY’s course material for Introduction to System Programming, by
Stewart Weiss [http://compsci.hunter.cuny.edu/~sweiss/]

	Chapter 11 [http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html]
of the IEEE Open Group Base Specifications Issue 7, “General Terminal
Interface”

	The GNU C Library documentation, section Low-Level Terminal Interface [http://www.gnu.org/software/libc/manual/html_mono/libc.html#toc-Low_002dLevel-Terminal-Interface-1]

	The source code of many popular terminal emulators. If there is ever any
question of “the meaning of a terminal capability”, or whether or not your
preferred terminal emulator actually handles them, read the source!

These are often written in the C language, and directly map the
“Control Sequence Inducers” (CSI, literally \x1b[for most modern
terminal types) emitted by most terminal capabilities to an action in a
series of case switch statements.

	Many modern libraries are now based on libvte [https://github.com/GNOME/vte] (or just ‘vte’): Gnome Terminal,
sakura, Terminator, Lilyterm, ROXTerm, evilvte, Termit, Termite, Tilda,
tinyterm, lxterminal.

	xterm, urxvt, SyncTerm, and EtherTerm.

	There are far too many to name, Chose one you like!

	The source code of the tty(4), pty(4), and the given “console driver” for
any posix-like operating system. If you search thoroughly enough, you will
eventually discover a terminal sequence decoder, usually a case switch
that translates \x1b[0m into a “reset color” action towards the video
driver. Though tty.c is linked here (the only kernel file common among
them), it is probably not the most interesting, but it can get you started:

	FreeBSD [https://github.com/freebsd/freebsd/blob/master/sys/kern/tty.c]

	OpenBSD [http://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/kern/tty.c?content-type=text/plain]

	Illumos (Solaris) [https://github.com/illumos/illumos-gate/blob/master/usr/src/uts/common/io/tty_common.c]

	Minix [https://github.com/minix3/minix/blob/master/minix/drivers/tty/tty/tty.c]

	Linux [https://github.com/torvalds/linux/blob/master/drivers/tty/n_tty.c]

The TTY driver is a great introduction to Kernel and Systems programming,
because familiar components may be discovered and experimented with. It is
available on all operating systems (except windows), and because of its
critical nature, examples of efficient file I/O, character buffers (often
implemented as “ring buffers”) and even fine-grained kernel locking can be
found.

	Thomas E. Dickey [http://invisible-island.net/] has been maintaining
xterm [http://invisible-island.net/xterm/xterm.html], as well as a
primary maintainer of many related packages such as ncurses [http://invisible-island.net/ncurses/ncurses.html] for quite a long
while.

	termcap & terminfo (O’Reilly Nutshell) [http://www.amazon.com/termcap-terminfo-OReilly-Nutshell-Linda/dp/0937175226]
by Linda Mui, Tim O’Reilly, and John Strang.

	Note that System-V systems, also known as Unix98 [https://en.wikipedia.org/wiki/Single_UNIX_Specification] (SunOS, HP-UX,
AIX and others) use a Streams [https://en.wikipedia.org/wiki/STREAMS]
interface. On these systems, the ioctl(2) [http://pubs.opengroup.org/onlinepubs/009695399/functions/ioctl.html]
interface provides the PUSH and POP parameters to communicate with
a Streams device driver, which differs significantly from Linux and BSD.

Many of these systems provide compatible interfaces for Linux, but they may
not always be as complete as the counterpart they emulate, most especially
in regards to managing pseudo-terminals.

Growing Pains

When making terminal applications, there are a surprisingly number of
portability issues and edge cases. Although Blessed provides an abstraction
for the full curses capability database, it is not sufficient to secure
you from several considerations shared here.

8 and 16 colors

Where 8 and 16 colors are used, they should be assumed to be the
CGA Color Palette [https://en.wikipedia.org/wiki/Color_Graphics_Adapter#With_an_RGBI_monitor]. Though there is no terminal standard that proclaims
that the CGA colors are used, their values are the best approximations
across all common hardware terminals and terminal emulators.

A recent phenomenon of users is to customize their base 16 colors to provide
(often, more “washed out”) color schemes. Furthermore, we are only recently
getting LCD displays of colorspaces that achieve close approximation to the
original video terminals. Some find these values uncomfortably intense: in
their original CRT form, their contrast and brightness was lowered by hardware
dials, whereas today’s LCD’s typically display well only near full intensity.

Though we may not detect the colorspace of the remote terminal, we can:

	Trust that a close approximation of the CGA Color Palette [https://en.wikipedia.org/wiki/Color_Graphics_Adapter#With_an_RGBI_monitor] for the base
16 colors will be displayed for most users.

	Trust that users who have made the choice to adjust their palette have made
the choice to do so, and are able to re-adjust such palettes as necessary
to accommodate different programs (such as through the use of “Themes”).

Note

It has become popular to use dynamic system-wide color palette adjustments
in software such as f.lux [https://justgetflux.com/], which adjust the system-wide “Color Profile”
of the entire graphics display depending on the time of day. One might
assume that term.blue("text") may be completely invisible to such
users during the night!

Where is brown, purple, or grey?

There are only 8 color names on a 16-color terminal: The second set of
eight colors are “high intensity” versions of the first in direct series.

The colors brown, purple, and grey are not named in the first series,
though they are available:

	brown: yellow is brown, only high-intensity yellow
(bright_yellow) is yellow!

	purple: magenta is purple. In earlier, 4-bit color spaces, there
were only black, cyan, magenta, and white of low and high intensity, such
as found on common home computers like the ZX Spectrum [https://en.wikipedia.org/wiki/List_of_8-bit_computer_hardware_palettes#ZX_Spectrum].

Additional “colors” were only possible through dithering. The color names
cyan and magenta on later graphics adapters are carried over from its
predecessors. Although the color cyan remained true in RGB value on
16-color to its predecessor, magenta shifted farther towards blue from red
becoming purple (as true red was introduced as one of the new base 8
colors).

	grey: there are actually three shades of grey (or American spelling,
‘gray’), though the color attribute named ‘grey’ does not exist!

In ascending order of intensity, the shades of grey are:

	bold_black: in lieu of the uselessness of an “intense black”, this is
color is instead mapped to “dark grey”.

	white: white is actually mild compared to the true color ‘white’: this
is more officially mapped to “common grey”, and is often the default
foreground color.

	bright_white: is pure white (#ffffff).

white-on-black

The default foreground and background should be assumed as white-on-black.

For quite some time, the families of terminals produced by DEC, IBM, and
Tektronix dominated the computing world with the default color scheme of
green-on-black and less commonly amber-on-black monochrome displays:
The inverse was a non-default configuration. The IBM 3270 clients exclusively
used green-on-black in both hardware and software emulators, and is likely
a driving factor of the default white-on-black appearance of the first IBM
Personal Computer.

The less common black-on-white “ink paper” style of emulators is a valid
concern for those designing terminal interfaces. The color scheme of
black-on-white directly conflicts with the intention of bold is bright,
where term.bright_red('ATTENTION!') may become difficult to read,
as it appears as pink on white!

History of ink-paper inspired black-on-white

Early home computers with color video adapters, such as the Commodore 64
provided white-on-blue as their basic video terminal configuration. One can
only assume such appearances were provided to demonstrate their color
capabilities over competitors (such as the Apple][).

More common, X11’s xterm and the software HyperTerm bundle with MS Windows
provided an “ink on paper” black-on-white appearance as their default
configuration. Two popular emulators continue to supply black-on-white by
default to this day: Xorg’s xterm and Apple’s Terminal.app.

Note

Windows no longer supplies a terminal emulator: the “command prompt”
as we know it now uses the MSVCRT API routines to interact and does not
make use of terminal sequences, even ignoring those sequences that MS-DOS
family of systems previously interpreted through the ANSI.SYS driver,
though it continues to default to white-on-black.

Bold is bright

Where Bold is used, it should be assumed to be *Bright*.

Due to the influence of early graphics adapters providing a set of 8
“low-intensity” and 8 “high intensity” versions of the first, the term
“bold” for terminals sequences is synonymous with “high intensity” in
almost all circumstances.

History of bold as “wide stroke”

In typography, the true translation of “bold” is that a font should be
displayed with emphasis. In classical terms, this would be achieved by
pen be re-writing over the same letters. On a teletype or printer, this was
similarly achieved by writing a character, backspacing, then repeating the
same character in a form called overstriking.

To bold a character, C, one would emit the sequence C^HC where
^H is backspace (0x08). To underline C, one would would emit
C^H_.

Video terminals do not support overstriking. Though the mdoc format for
manual pages continue to emit overstriking sequences for bold and underline,
translators such as mandoc will instead emit an appropriate terminal sequence.

Many characters previously displayable by combining using overstriking of
ASCII characters on teletypes, such as: ±, ≠, or ⩝ were delegated to a
code page [https://en.wikipedia.org/wiki/Code_page] or lost entirely until the introduction of multibyte encodings.

Much like the “ink paper” introduction in windowing systems for terminal
emulators, “wide stroke” bold was introduced only much later when combined
with operating systems that provided font routines such as TrueType.

Enforcing white-on-black

In conclusion, white-on-black should be considered the default. If there is
a need to enforce white-on-black for terminal clients suspected to be
defaulted as black-on-white, one would want to trust that a combination of
term.home + term.white_on_black + term.clear should repaint the entire
emulator’s window with the desired effect.

However, this cannot be trusted to all terminal emulators to perform
correctly! Depending on your audience, you may instead ensure that the
entire screen (including whitespace) is painted using the on_black
mnemonic.

Beware of customized color schemes

A recent phenomenon is for users to customize these first 16 colors of their
preferred emulator to colors of their own liking. Though this has always been
possible with ~/.XResources, the introduction of PuTTy and iTerm2 to
interactively adjustment these colors have made this much more common.

This may cause your audience to see your intended interface in a wildly
different form. Your intended presentation may appear mildly unreadable.

Users are certainly free to customize their colors however they like, but it
should be known that displaying term.black_on_red("DANGER!") may appear
as “grey on pastel red” to your audience, reducing the intended effect of
intensity.

256 colors can avoid customization

The first instinct of a user who aliases ls(1) to ls -G or colorls,
when faced with the particularly low intensity of the default blue
attribute is to adjust their terminal emulator’s color scheme of the base
16 colors.

This is not necessary: the environment variable LSCOLORS may be redefined
to map an alternative color for blue, or to use bright_blue in its place.

Furthermore, all common terminal text editors such as emacs or vim may be
configured with “colorschemes” to make use of the 256-color support found in
most modern emulators. Many readable shades of blue are available, and many
programs that emit such colors can be configured to emit a higher or lower
intensity variant from the full 256 color space through program configuration.

Monochrome and reverse

Note that reverse takes the current foreground and background colors and
reverses them. In contrast, the compound formatter black_on_red would
fail to set the background or foreground color on a monochrome display,
resulting in the same stylization as normal – it would not appear any
different!

If your userbase consists of monochrome terminals, you may wish to provide
“lightbars” and other such effects using the compound formatter
red_reverse. In the literal sense of “set foreground color to red, then
swap foreground and background”, this produces a similar effect on
both color and monochrome displays.

For text, very few {color}_on_{color} formatters are visible with the
base 16 colors, so you should generally wish for black_on_{color}
anyway. By using {color}_reverse you may be portable with monochrome
displays as well.

Multibyte Encodings and Code pages

A terminal that supports both multibyte encodings (UTF-8) and legacy 8-bit
code pages (ISO 2022) may instruct the terminal to switch between both
modes using the following sequences:

	\x1b%G activates UTF-8 with an unspecified implementation level
from ISO 2022 in a way that allows to go back to ISO 2022 again.

	\x1b%@ goes back from UTF-8 to ISO 2022 in case UTF-8 had been
entered via \x1b%G.

	\x1b%/G switches to UTF-8 Level 1 with no return.

	\x1b%/H switches to UTF-8 Level 2 with no return.

	\x1b%/I switches to UTF-8 Level 3 with no return.

When a terminal is in ISO 2022 mode, you may use a sequence
to request a terminal to change its code page [https://en.wikipedia.org/wiki/Code_page]. It begins by \x1b(,
followed by an ASCII character representing a code page selection. For
example \x1b(U on the legacy VGA Linux console switches to the IBM CP437 [https://en.wikipedia.org/wiki/Code_page_437]
code page [https://en.wikipedia.org/wiki/Code_page], allowing North American MS-DOS artwork to be displayed in its
natural 8-bit byte encoding. A list of standard codes and the expected code
page may be found on Thomas E. Dickey’s xterm control sequences section on
sequences following the Control-Sequence-Inducer [http://invisible-island.net/xterm/ctlseqs/ctlseqs.html#h2-Controls-beginning-with-ESC].

For more information, see What are the issues related to UTF-8 terminal
emulators? [http://www.cl.cam.ac.uk/~mgk25/unicode.html#term] by
Markus Kuhn [http://www.cl.cam.ac.uk/~mgk25/] of the University of
Cambridge.

One can be assured that the connecting client is capable of representing
UTF-8 and other multibyte character encodings by the Environment variable
LANG. If this is not possible or reliable, there is an intrusive detection
method demonstrated in the example program detect-multibyte.py.

Alt or meta sends Escape

Programs using GNU readline such as bash continue to provide default mappings
such as ALT+u to uppercase the word after cursor. This is achieved
by the configuration option altSendsEscape or metaSendsEscape [http://invisible-island.net/xterm/ctlseqs/ctlseqs.html#h2-Alt-and-Meta-Keys]

The default for most terminals, however, is that the meta key is bound by
the operating system (such as META + F for find), and that ALT is used
for inserting international keys (where the combination ALT+u, a is used
to insert the character ä).

It is therefore a recommendation to avoid alt or meta keys entirely in
applications, and instead prefer the ctrl-key combinations, so as to avoid
instructing your users to configure their terminal emulators to communicate
such sequences.

If you wish to allow them optionally (such as through readline), the ability
to detect alt or meta key combinations is achieved by prefacing the combining
character with escape, so that ALT+z becomes Escape + z (or, in raw form
\x1bz). Blessings currently provides no further assistance in detecting
these key combinations.

Backspace sends delete

Typically, backspace is ^H (8, or 0x08) and delete is ^? (127, or 0x7f).

On some systems however, the key for backspace is actually labeled and
transmitted as “delete”, though its function in the operating system behaves
just as backspace.

It is highly recommend to accept both KEY_DELETE and KEY_BACKSPACE
as having the same meaning except when implementing full screen editors,
and provide a choice to enable the delete mode by configuration.

The misnomer of ANSI

When people say ‘ANSI Sequence’, they are discussing:

	Standard ECMA-48 [http://www.ecma-international.org/publications/standards/Ecma-048.htm]: Control Functions for Coded Character Sets

	ANSI X3.64 [http://sydney.edu.au/engineering/it/~tapted/ansi.html] from
1981, when the American National Standards Institute [http://www.ansi.org/] adopted the ECMA-48 [http://www.ecma-international.org/publications/standards/Ecma-048.htm] as standard, which was later
withdrawn in 1997 (so in this sense it is not an ANSI standard).

	The ANSI.SYS [http://www.kegel.com/nansi/] driver provided in MS-DOS and
clones. The popularity of the IBM Personal Computer and MS-DOS of the era,
and its ability to display colored text further populated the idea that such
text “is ANSI”.

	The various code pages used in MS-DOS Personal Computers,
providing “block art” characters in the 8th bit (int 127-255), paired
with ECMA-48 [http://www.ecma-international.org/publications/standards/Ecma-048.htm] sequences supported by the MS-DOS ANSI.SYS [http://www.kegel.com/nansi/] driver
to create artwork, known as ANSI art [http://pc.textmod.es/].

	The ANSI terminal database entry and its many descendants in the
terminfo database [http://invisible-island.net/ncurses/terminfo.src.html]. This is mostly
due to terminals compatible with SCO UNIX, which was the successor of
Microsoft’s Xenix, which brought some semblance of the Microsoft DOS
ANSI.SYS [http://www.kegel.com/nansi/] driver capabilities.

	Select Graphics Rendition (SGR) [http://vt100.net/docs/vt510-rm/SGR]
on vt100 clones, which include many of the common sequences in ECMA-48 [http://www.ecma-international.org/publications/standards/Ecma-048.htm].

	Any sequence started by the Control-Sequence-Inducer [http://invisible-island.net/xterm/ctlseqs/ctlseqs.html#h2-Controls-beginning-with-ESC] is often
mistakenly termed as an “ANSI Escape Sequence” though not appearing in
ECMA-48 [http://www.ecma-international.org/publications/standards/Ecma-048.htm] or interpreted by the ANSI.SYS [http://www.kegel.com/nansi/] driver. The adjoining phrase
“Escape Sequence” is so termed because it follows the ASCII character
for the escape key (ESC, \x1b).

API Documentation

terminal.py

This module contains Terminal, the primary API entry point.

	
class Terminal(kind=None, stream=None, force_styling=False)

	An abstraction for color, style, positioning, and input in the terminal.

This keeps the endless calls to tigetstr() and tparm() out of your
code, acts intelligently when somebody pipes your output to a non-terminal,
and abstracts over the complexity of unbuffered keyboard input. It uses the
terminfo database to remain portable across terminal types.

Initialize the terminal.

	Parameters

	
	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – A terminal string as taken by curses.setupterm() [https://docs.python.org/3/library/curses.html#curses.setupterm].
Defaults to the value of the TERM environment variable.

Note

Terminals withing a single process must share a common
kind. See _CUR_TERM.

	stream (file) – A file-like object representing the Terminal output.
Defaults to the original value of sys.__stdout__ [https://docs.python.org/3/library/sys.html#sys.__stdout__], like
curses.initscr() [https://docs.python.org/3/library/curses.html#curses.initscr] does.

If stream is not a tty, empty Unicode strings are returned for
all capability values, so things like piping your program output to
a pipe or file does not emit terminal sequences.

	force_styling (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to force the emission of capabilities
even if sys.__stdout__ [https://docs.python.org/3/library/sys.html#sys.__stdout__] does not seem to be connected to a
terminal. If you want to force styling to not happen, use
force_styling=None.

This comes in handy if users are trying to pipe your output through
something like less -r or build systems which support decoding
of terminal sequences.

	
__getattr__(attr)

	Return a terminal capability as Unicode string.

For example, term.bold is a unicode string that may be prepended
to text to set the video attribute for bold, which should also be
terminated with the pairing normal. This capability
returns a callable, so you can use term.bold("hi") which
results in the joining of (term.bold, "hi", term.normal).

Compound formatters may also be used. For example:

>>> term.bold_blink_red_on_green("merry x-mas!")

For a parametrized capability such as move (or cup), pass the
parameters as positional arguments:

>>> term.move(line, column)

See the manual page terminfo(5) [http://invisible-island.net/ncurses/man/terminfo.5.html] for a
complete list of capabilities and their arguments.

	
kind

	Read-only property: Terminal kind determined on class initialization.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
does_styling

	Read-only property: Whether this class instance may emit sequences.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_a_tty

	Read-only property: Whether stream is a terminal.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
height

	Read-only property: Height of the terminal (in number of lines).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
width

	Read-only property: Width of the terminal (in number of columns).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
location(x=None, y=None)

	Context manager for temporarily moving the cursor.

Move the cursor to a certain position on entry, let you print stuff
there, then return the cursor to its original position:

term = Terminal()
with term.location(2, 5):
 for x in xrange(10):
 print('I can do it %i times!' % x)
print('We're back to the original location.')

Specify x to move to a certain column, y to move to a certain
row, both, or neither. If you specify neither, only the saving and
restoration of cursor position will happen. This can be useful if you
simply want to restore your place after doing some manual cursor
movement.

Note

The store- and restore-cursor capabilities used internally
provide no stack. This means that location() calls cannot be
nested: only one should be entered at a time.

	
get_location(timeout=None)

	Return tuple (row, column) of cursor position.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Return after time elapsed in seconds with value
(-1, -1) indicating that the remote end did not respond.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Returns

	cursor position as tuple in form of (row, column).

The location of the cursor is determined by emitting the u7
terminal capability, or VT100 Query Cursor Position [http://www.termsys.demon.co.uk/vtansi.htm#status] when such
capability is undefined, which elicits a response from a reply string
described by capability u6, or again VT100’s definition of
\x1b[%i%d;%dR when undefined.

The (row, col) return value matches the parameter order of the
move capability, so that the following sequence should cause the
cursor to not move at all:

>>> term = Terminal()
>>> term.move(*term.get_location()))

Warning

You might first test that a terminal is capable of
informing you of its location, while using a timeout, before
later calling. When a timeout is specified, always ensure the
return value is conditionally checked for (-1, -1).

	
fullscreen()

	Context manager that switches to secondary screen, restoring on exit.

Under the hood, this switches between the primary screen buffer and
the secondary one. The primary one is saved on entry and restored on
exit. Likewise, the secondary contents are also stable and are
faithfully restored on the next entry:

with term.fullscreen():
 main()

Note

There is only one primary and one secondary screen buffer.
fullscreen() calls cannot be nested, only one should be
entered at a time.

	
hidden_cursor()

	Context manager that hides the cursor, setting visibility on exit.

	with term.hidden_cursor():

	main()

Note

hidden_cursor() calls cannot be nested: only one
should be entered at a time.

	
color

	A callable string that sets the foreground color.

	Parameters

	num (int [https://docs.python.org/3/library/functions.html#int]) – The foreground color index. This should be within the
bounds of number_of_colors.

	Return type

	ParameterizingString

The capability is unparameterized until called and passed a number,
0-15, at which point it returns another string which represents a
specific color change. This second string can further be called to
color a piece of text and set everything back to normal afterward.

	
on_color

	A callable capability that sets the background color.

	Parameters

	num (int [https://docs.python.org/3/library/functions.html#int]) – The background color index.

	Return type

	ParameterizingString

	
normal

	A capability that resets all video attributes.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

normal is an alias for sgr0 or exit_attribute_mode. Any
styling attributes previously applied, such as foreground or
background colors, reverse video, or bold are reset to defaults.

	
stream

	Read-only property: stream the terminal outputs to.

This is a convenience attribute. It is used internally for implied
writes performed by context managers hidden_cursor(),
fullscreen(), location(), and keypad().

	
number_of_colors

	Read-only property: number of colors supported by terminal.

Common values are 0, 8, 16, 88, and 256.

Most commonly, this may be used to test whether the terminal supports
colors. Though the underlying capability returns -1 when there is no
color support, we return 0. This lets you test more Pythonically:

if term.number_of_colors:
 ...

	
ljust(text, width=None, fillchar=' ')

	Left-align text, which may contain terminal sequences.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to be aligned

	width (int [https://docs.python.org/3/library/functions.html#int]) – Total width to fill with aligned text. If
unspecified, the whole width of the terminal is filled.

	fillchar (str [https://docs.python.org/3/library/stdtypes.html#str]) – String for padding the right of text

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
rjust(text, width=None, fillchar=' ')

	Right-align text, which may contain terminal sequences.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to be aligned

	width (int [https://docs.python.org/3/library/functions.html#int]) – Total width to fill with aligned text. If
unspecified, the whole width of the terminal is used.

	fillchar (str [https://docs.python.org/3/library/stdtypes.html#str]) – String for padding the left of text

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
center(text, width=None, fillchar=' ')

	Center text, which may contain terminal sequences.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to be centered

	width (int [https://docs.python.org/3/library/functions.html#int]) – Total width in which to center text. If
unspecified, the whole width of the terminal is used.

	fillchar (str [https://docs.python.org/3/library/stdtypes.html#str]) – String for padding the left and right of text

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
length(text)

	Return printable length of a string containing sequences.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to measure. May contain terminal sequences.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The number of terminal character cells the string will occupy
when printed

Wide characters that consume 2 character cells are supported:

>>> term = Terminal()
>>> term.length(term.clear + term.red(u'コンニチハ'))
10

Note

Sequences such as ‘clear’, which is considered as a
“movement sequence” because it would move the cursor to
(y, x)(0, 0), are evaluated as a printable length of
0.

	
strip(text, chars=None)

	Return text without sequences and leading or trailing whitespace.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

>>> term.strip(u' \x1b[0;3m xyz ')
u'xyz'

	
rstrip(text, chars=None)

	Return text without terminal sequences or trailing whitespace.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

>>> term.rstrip(u' \x1b[0;3m xyz ')
u' xyz'

	
lstrip(text, chars=None)

	Return text without terminal sequences or leading whitespace.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

>>> term.lstrip(u' \x1b[0;3m xyz ')
u'xyz '

	
strip_seqs(text)

	Return text stripped of only its terminal sequences.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

>>> term.strip_seqs(u'\x1b[0;3mxyz')
u'xyz'
>>> term.strip_seqs(term.cuf(5) + term.red(u'test'))
u' test'

Note

Non-destructive sequences that adjust horizontal distance
(such as \b or term.cuf(5)) are replaced by destructive
space or erasing.

	
split_seqs(text, **kwds)

	Return text split by individual character elements and sequences.

	Parameters

	kwds – remaining keyword arguments for re.split() [https://docs.python.org/3/library/re.html#re.split].

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

>>> term.split_seqs(term.underline(u'xyz'))
['\x1b[4m', 'x', 'y', 'z', '\x1b(B', '\x1b[m']

	
wrap(text, width=None, **kwargs)

	Text-wrap a string, returning a list of wrapped lines.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unlike textwrap.wrap() [https://docs.python.org/3/library/textwrap.html#textwrap.wrap], text may contain
terminal sequences, such as colors, bold, or underline. By
default, tabs in text are expanded by
string.expandtabs().

	width (int [https://docs.python.org/3/library/functions.html#int]) – Unlike textwrap.wrap() [https://docs.python.org/3/library/textwrap.html#textwrap.wrap], width will
default to the width of the attached terminal.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

See textwrap.TextWrapper [https://docs.python.org/3/library/textwrap.html#textwrap.TextWrapper] for keyword arguments that can
customize wrapping behaviour.

	
getch()

	Read, decode, and return the next byte from the keyboard stream.

	Return type

	unicode

	Returns

	a single unicode character, or u'' if a multi-byte
sequence has not yet been fully received.

This method name and behavior mimics curses getch(void), and
it supports inkey(), reading only one byte from
the keyboard string at a time. This method should always return
without blocking if called after kbhit() has returned True.

Implementors of alternate input stream methods should override
this method.

	
ungetch(text)

	Buffer input data to be discovered by next call to inkey().

	Parameters

	ucs (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to be buffered as keyboard input.

	
kbhit(timeout=None, **_kwargs)

	Return whether a keypress has been detected on the keyboard.

This method is used by inkey() to determine if a byte may
be read using getch() without blocking. The standard
implementation simply uses the select.select() [https://docs.python.org/3/library/select.html#select.select] call on stdin.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – When timeout is 0, this call is
non-blocking, otherwise blocking indefinitely until keypress
is detected when None (default). When timeout is a
positive number, returns after timeout seconds have
elapsed (float).

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True if a keypress is awaiting to be read on the keyboard
attached to this terminal. When input is not a terminal, False is
always returned.

	
cbreak()

	Allow each keystroke to be read immediately after it is pressed.

This is a context manager for tty.setcbreak() [https://docs.python.org/3/library/tty.html#tty.setcbreak].

This context manager activates ‘rare’ mode, the opposite of ‘cooked’
mode: On entry, tty.setcbreak() [https://docs.python.org/3/library/tty.html#tty.setcbreak] mode is activated disabling
line-buffering of keyboard input and turning off automatic echo of
input as output.

Note

You must explicitly print any user input you would like
displayed. If you provide any kind of editing, you must handle
backspace and other line-editing control functions in this mode
as well!

Normally, characters received from the keyboard cannot be read
by Python until the Return key is pressed. Also known as cooked or
canonical input mode, it allows the tty driver to provide
line-editing before shuttling the input to your program and is the
(implicit) default terminal mode set by most unix shells before
executing programs.

Technically, this context manager sets the termios [https://docs.python.org/3/library/termios.html#module-termios] attributes
of the terminal attached to sys.__stdin__ [https://docs.python.org/3/library/sys.html#sys.__stdin__].

Note

tty.setcbreak() [https://docs.python.org/3/library/tty.html#tty.setcbreak] sets VMIN = 1 and VTIME = 0,
see http://www.unixwiz.net/techtips/termios-vmin-vtime.html

	
raw()

	A context manager for tty.setraw() [https://docs.python.org/3/library/tty.html#tty.setraw].

Raw mode differs from cbreak() mode in that input and output
processing of characters is disabled, in similar in that they both
allow each keystroke to be read immediately after it is pressed.

For input, the interrupt, quit, suspend, and flow control characters
are received as their raw control character values rather than
generating a signal.

For output, the newline chr(10) is not sufficient enough to return
the carriage, requiring chr(13) printed explicitly by your
program:

with term.raw():
 print("printing in raw mode", end="\r\n")

	
keypad()

	Context manager that enables directional keypad input.

On entrying, this puts the terminal into “keyboard_transmit” mode by
emitting the keypad_xmit (smkx) capability. On exit, it emits
keypad_local (rmkx).

On an IBM-PC keyboard with numeric keypad of terminal-type xterm,
with numlock off, the lower-left diagonal key transmits sequence
\\x1b[F, translated to Terminal attribute
KEY_END.

However, upon entering keypad(), \\x1b[OF is transmitted,
translating to KEY_LL (lower-left key), allowing you to determine
diagonal direction keys.

	
inkey(timeout=None, esc_delay=0.35, **_kwargs)

	Read and return the next keyboard event within given timeout.

Generally, this should be used inside the raw() context manager.

	Parameters

	
	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Number of seconds to wait for a keystroke before
returning. When None (default), this method may block
indefinitely.

	esc_delay (float [https://docs.python.org/3/library/functions.html#float]) – To distinguish between the keystroke of
KEY_ESCAPE, and sequences beginning with escape, the parameter
esc_delay specifies the amount of time after receiving escape
(chr(27)) to seek for the completion of an application key
before returning a Keystroke instance for
KEY_ESCAPE.

	Return type

	Keystroke.

	Returns

	Keystroke, which may be empty (u'') if
timeout is specified and keystroke is not received.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – When stream is not a terminal, having
no keyboard attached, a timeout value of None would block
indefinitely, prevented by by raising an exception.

Note

When used without the context manager cbreak(), or
raw(), sys.__stdin__ [https://docs.python.org/3/library/sys.html#sys.__stdin__] remains line-buffered, and this
function will block until the return key is pressed!

	
class WINSZ

	Structure represents return value of termios.TIOCGWINSZ.

	
ws_row

	rows, in characters

	
ws_col

	columns, in characters

	
ws_xpixel

	horizontal size, pixels

	
ws_ypixel

	vertical size, pixels

Create new instance of WINSZ(ws_row, ws_col, ws_xpixel, ws_ypixel)

	
_CUR_TERM = None

	From libcurses/doc/ncurses-intro.html (ESR, Thomas Dickey, et. al):

"After the call to setupterm(), the global variable cur_term is set to
 point to the current structure of terminal capabilities. By calling
 setupterm() for each terminal, and saving and restoring cur_term, it
 is possible for a program to use two or more terminals at once."

However, if you study Python’s ./Modules/_cursesmodule.c, you’ll find:

if (!initialised_setupterm && setupterm(termstr,fd,&err) == ERR) {

Python - perhaps wrongly - will not allow for re-initialisation of new
terminals through curses.setupterm() [https://docs.python.org/3/library/curses.html#curses.setupterm], so the value of cur_term cannot
be changed once set: subsequent calls to curses.setupterm() [https://docs.python.org/3/library/curses.html#curses.setupterm] have no
effect.

Therefore, the Terminal.kind of each Terminal is
essentially a singleton. This global variable reflects that, and a warning
is emitted if somebody expects otherwise.

formatters.py

This sub-module provides sequence-formatting functions.

	
_make_colors()

	Return set of valid colors and their derivatives.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
_make_compoundables(colors)

	Return given set colors along with all “compoundable” attributes.

	Parameters

	colors (set [https://docs.python.org/3/library/stdtypes.html#set]) – set of color names as string.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
COLORS = {'black', 'blue', 'bright_black', 'bright_blue', 'bright_cyan', 'bright_green', 'bright_magenta', 'bright_red', 'bright_white', 'bright_yellow', 'cyan', 'green', 'magenta', 'on_black', 'on_blue', 'on_bright_black', 'on_bright_blue', 'on_bright_cyan', 'on_bright_green', 'on_bright_magenta', 'on_bright_red', 'on_bright_white', 'on_bright_yellow', 'on_cyan', 'on_green', 'on_magenta', 'on_red', 'on_white', 'on_yellow', 'red', 'white', 'yellow'}

	Valid colors and their background (on), bright,
and bright-background derivatives.

	
COMPOUNDABLES = {'black', 'blink', 'blue', 'bold', 'bright_black', 'bright_blue', 'bright_cyan', 'bright_green', 'bright_magenta', 'bright_red', 'bright_white', 'bright_yellow', 'cyan', 'dim', 'green', 'italic', 'magenta', 'on_black', 'on_blue', 'on_bright_black', 'on_bright_blue', 'on_bright_cyan', 'on_bright_green', 'on_bright_magenta', 'on_bright_red', 'on_bright_white', 'on_bright_yellow', 'on_cyan', 'on_green', 'on_magenta', 'on_red', 'on_white', 'on_yellow', 'red', 'reverse', 'shadow', 'standout', 'subscript', 'superscript', 'underline', 'white', 'yellow'}

	Attributes and colors which may be compounded by underscore.

	
class ParameterizingString

	A Unicode string which can be called as a parameterizing termcap.

For example:

>>> term = Terminal()
>>> color = ParameterizingString(term.color, term.normal, 'color')
>>> color(9)('color #9')
u'\x1b[91mcolor #9\x1b(B\x1b[m'

Class constructor accepting 3 positional arguments.

	Parameters

	
	cap – parameterized string suitable for curses.tparm()

	normal – terminating sequence for this capability (optional).

	name – name of this terminal capability (optional).

	
__call__(*args)

	Returning FormattingString instance for given parameters.

Return evaluated terminal capability (self), receiving arguments
*args, followed by the terminating sequence (self.normal) into
a FormattingString capable of being called.

	Return type

	FormattingString or NullCallableString

	
class ParameterizingProxyString

	A Unicode string which can be called to proxy missing termcap entries.

This class supports the function get_proxy_string(), and mirrors
the behavior of ParameterizingString, except that instead of
a capability name, receives a format string, and callable to filter the
given positional *args of ParameterizingProxyString.__call__()
into a terminal sequence.

For example:

>>> from blessed import Terminal
>>> term = Terminal('screen')
>>> hpa = ParameterizingString(term.hpa, term.normal, 'hpa')
>>> hpa(9)
u''
>>> fmt = u'\x1b[{0}G'
>>> fmt_arg = lambda *arg: (arg[0] + 1,)
>>> hpa = ParameterizingProxyString((fmt, fmt_arg), term.normal, 'hpa')
>>> hpa(9)
u'\x1b[10G'

Class constructor accepting 4 positional arguments.

	Parameters

	
	fmt – format string suitable for displaying terminal sequences.

	callable – receives __call__ arguments for formatting fmt.

	normal – terminating sequence for this capability (optional).

	name – name of this terminal capability (optional).

	
__call__(*args)

	Returning FormattingString instance for given parameters.

Arguments are determined by the capability. For example, hpa
(move_x) receives only a single integer, whereas cup (move)
receives two integers. See documentation in terminfo(5) for the
given capability.

	Return type

	FormattingString

	
get_proxy_string(term, attr)

	Proxy and return callable string for proxied attributes.

	Parameters

	
	term (Terminal) – Terminal instance.

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – terminal capability name that may be proxied.

	Return type

	None or ParameterizingProxyString.

	Returns

	ParameterizingProxyString for some attributes
of some terminal types that support it, where the terminfo(5)
database would otherwise come up empty, such as move_x
attribute for term.kind of screen. Otherwise, None.

	
class FormattingString

	A Unicode string which doubles as a callable.

This is used for terminal attributes, so that it may be used both
directly, or as a callable. When used directly, it simply emits
the given terminal sequence. When used as a callable, it wraps the
given (string) argument with the 2nd argument used by the class
constructor:

>>> style = FormattingString(term.bright_blue, term.normal)
>>> print(repr(style))
u'\x1b[94m'
>>> style('Big Blue')
u'\x1b[94mBig Blue\x1b(B\x1b[m'

Class constructor accepting 2 positional arguments.

	Parameters

	
	sequence – terminal attribute sequence.

	normal – terminating sequence for this attribute (optional).

	
__call__(*args)

	Return text joined by sequence and normal.

	
class NullCallableString

	A dummy callable Unicode alternative to FormattingString.

This is used for colors on terminals that do not support colors,
it is just a basic form of unicode that may also act as a callable.

Class constructor.

	
__call__(*args)

	Allow empty string to be callable, returning given string, if any.

When called with an int as the first arg, return an empty Unicode. An
int is a good hint that I am a ParameterizingString, as there
are only about half a dozen string-returning capabilities listed in
terminfo(5) which accept non-int arguments, they are seldom used.

When called with a non-int as the first arg (no no args at all), return
the first arg, acting in place of FormattingString without
any attributes.

	
split_compound(compound)

	Split compound formating string into segments.

>>> split_compound('bold_underline_bright_blue_on_red')
['bold', 'underline', 'bright_blue', 'on_red']

	Parameters

	compound (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string that may contain compounds, separated by
underline (_).

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
resolve_capability(term, attr)

	Resolve a raw terminal capability using tigetstr().

	Parameters

	
	term (Terminal) – Terminal instance.

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – terminal capability name.

	Returns

	string of the given terminal capability named by attr,
which may be empty (u’‘) if not found or not supported by the
given kind.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
resolve_color(term, color)

	Resolve a simple color name to a callable capability.

This function supports resolve_attribute().

	Parameters

	
	term (Terminal) – Terminal instance.

	color (str [https://docs.python.org/3/library/stdtypes.html#str]) – any string found in set COLORS.

	Returns

	a string class instance which emits the terminal sequence
for the given color, and may be used as a callable to wrap the
given string with such sequence.

	Returns

	NullCallableString when
number_of_colors is 0,
otherwise FormattingString.

	Return type

	NullCallableString or FormattingString

	
resolve_attribute(term, attr)

	Resolve a terminal attribute name into a capability class.

	Parameters

	
	term (Terminal) – Terminal instance.

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Sugary, ordinary, or compound formatted terminal
capability, such as “red_on_white”, “normal”, “red”, or
“bold_on_black”, respectively.

	Returns

	a string class instance which emits the terminal sequence
for the given terminal capability, or may be used as a callable to
wrap the given string with such sequence.

	Returns

	NullCallableString when
number_of_colors is 0,
otherwise FormattingString.

	Return type

	NullCallableString or FormattingString

	
COLORS = {'black', 'blue', 'bright_black', 'bright_blue', 'bright_cyan', 'bright_green', 'bright_magenta', 'bright_red', 'bright_white', 'bright_yellow', 'cyan', 'green', 'magenta', 'on_black', 'on_blue', 'on_bright_black', 'on_bright_blue', 'on_bright_cyan', 'on_bright_green', 'on_bright_magenta', 'on_bright_red', 'on_bright_white', 'on_bright_yellow', 'on_cyan', 'on_green', 'on_magenta', 'on_red', 'on_white', 'on_yellow', 'red', 'white', 'yellow'}

	Valid colors and their background (on), bright,
and bright-background derivatives.

	
COMPOUNDABLES = {'black', 'blink', 'blue', 'bold', 'bright_black', 'bright_blue', 'bright_cyan', 'bright_green', 'bright_magenta', 'bright_red', 'bright_white', 'bright_yellow', 'cyan', 'dim', 'green', 'italic', 'magenta', 'on_black', 'on_blue', 'on_bright_black', 'on_bright_blue', 'on_bright_cyan', 'on_bright_green', 'on_bright_magenta', 'on_bright_red', 'on_bright_white', 'on_bright_yellow', 'on_cyan', 'on_green', 'on_magenta', 'on_red', 'on_white', 'on_yellow', 'red', 'reverse', 'shadow', 'standout', 'subscript', 'superscript', 'underline', 'white', 'yellow'}

	Attributes and colors which may be compounded by underscore.

keyboard.py

This sub-module provides ‘keyboard awareness’.

	
class Keystroke

	A unicode-derived class for describing a single keystroke.

A class instance describes a single keystroke received on input,
which may contain multiple characters as a multibyte sequence,
which is indicated by properties is_sequence returning
True.

When the string is a known sequence, code matches terminal
class attributes for comparison, such as term.KEY_LEFT.

The string-name of the sequence, such as u'KEY_LEFT' is accessed
by property name, and is used by the __repr__() method
to display a human-readable form of the Keystroke this class
instance represents. It may otherwise by joined, split, or evaluated
just as as any other unicode string.

Class constructor.

	
static __new__(cls, ucs='', code=None, name=None)

	Class constructor.

	
is_sequence

	Whether the value represents a multibyte sequence (bool).

	
name

	String-name of key sequence, such as u'KEY_LEFT' (str).

	
code

	Integer keycode value of multibyte sequence (int).

	
get_keyboard_codes()

	Return mapping of keycode integer values paired by their curses key-name.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Returns dictionary of (code, name) pairs for curses keyboard constant
values and their mnemonic name. Such as key 260, with the value of
its identity, u'KEY_LEFT'. These are derived from the attributes by
the same of the curses module, with the following exceptions:

	KEY_DELETE in place of KEY_DC

	KEY_INSERT in place of KEY_IC

	KEY_PGUP in place of KEY_PPAGE

	KEY_PGDOWN in place of KEY_NPAGE

	KEY_ESCAPE in place of KEY_EXIT

	KEY_SUP in place of KEY_SR

	KEY_SDOWN in place of KEY_SF

This function is the inverse of get_curses_keycodes(). With the
given override “mixins” listed above, the keycode for the delete key will
map to our imaginary KEY_DELETE mnemonic, effectively erasing the
phrase KEY_DC from our code vocabulary for anyone that wishes to use
the return value to determine the key-name by keycode.

	
get_keyboard_sequences(term)

	Return mapping of keyboard sequences paired by keycodes.

	Parameters

	term (blessed.Terminal) – Terminal instance.

	Returns

	mapping of keyboard unicode sequences paired by keycodes
as integer. This is used as the argument mapper to
the supporting function resolve_sequence().

	Return type

	OrderedDict

Initialize and return a keyboard map and sequence lookup table,
(sequence, keycode) from Terminal instance term,
where sequence is a multibyte input sequence of unicode
characters, such as u'\x1b[D', and keycode is an integer
value, matching curses constant such as term.KEY_LEFT.

The return value is an OrderedDict instance, with their keys
sorted longest-first.

	
_alternative_left_right(term)

	Determine and return mapping of left and right arrow keys sequences.

	Parameters

	term (blessed.Terminal) – Terminal instance.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

This function supports get_terminal_sequences() to discover
the preferred input sequence for the left and right application keys.

Return dict of sequences term._cuf1, and term._cub1,
valued as KEY_RIGHT, KEY_LEFT (when appropriate). It is
necessary to check the value of these sequences to ensure we do not
use u' ' and u'\b' for KEY_RIGHT and KEY_LEFT,
preferring their true application key sequence, instead.

	
_inject_curses_keynames()

	Inject KEY_NAMES that we think would be useful into the curses module.

This function compliments the global constant
DEFAULT_SEQUENCE_MIXIN. It is important to note that this
function has the side-effect of injecting new attributes to the
curses module, and is called from the global namespace at time of
import.

Though we may determine keynames and codes for keyboard input that
generate multibyte sequences, it is also especially useful to aliases
a few basic ASCII characters such as KEY_TAB instead of u'\t' for
uniformity.

Furthermore, many key-names for application keys enabled only by context
manager keypad() are surprisingly absent. We inject them
here directly into the curses module.

It is not necessary to directly “monkeypatch” the curses module to
contain these constants, as they will also be accessible as attributes
of the Terminal class instance, they are provided only for convenience
when mixed in with other curses code.

	
DEFAULT_SEQUENCE_MIXIN = (('\n', 343), ('\r', 343), ('\x08', 263), ('\t', 512), ('\x1b', 361), ('\x7f', 330), ('\x1b[A', 259), ('\x1b[B', 258), ('\x1b[C', 261), ('\x1b[D', 260), ('\x1b[F', 360), ('\x1b[H', 262), ('\x1b[K', 360), ('\x1b[U', 338), ('\x1b[V', 339), ('\x1bOM', 343), ('\x1bOj', 513), ('\x1bOk', 514), ('\x1bOl', 515), ('\x1bOm', 516), ('\x1bOn', 517), ('\x1bOo', 518), ('\x1bOX', 519), ('\x1bOp', 520), ('\x1bOq', 521), ('\x1bOr', 522), ('\x1bOs', 523), ('\x1bOt', 524), ('\x1bOu', 525), ('\x1bOv', 526), ('\x1bOw', 527), ('\x1bOx', 528), ('\x1bOy', 529), ('\x1b[1~', 362), ('\x1b[2~', 331), ('\x1b[3~', 330), ('\x1b[4~', 385), ('\x1b[5~', 339), ('\x1b[6~', 338), ('\x1b[7~', 262), ('\x1b[8~', 360), ('\x1b[OA', 259), ('\x1b[OB', 258), ('\x1b[OC', 261), ('\x1b[OD', 260), ('\x1b[OF', 360), ('\x1b[OH', 262), ('\x1bOP', 265), ('\x1bOQ', 266), ('\x1bOR', 267), ('\x1bOS', 268))

	In a perfect world, terminal emulators would always send exactly what
the terminfo(5) capability database plans for them, accordingly by the
value of the TERM name they declare.

But this isn’t a perfect world. Many vt220-derived terminals, such as
those declaring ‘xterm’, will continue to send vt220 codes instead of
their native-declared codes, for backwards-compatibility.

This goes for many: rxvt, putty, iTerm.

These “mixins” are used for all terminals, regardless of their type.

Furthermore, curses does not provide sequences sent by the keypad,
at least, it does not provide a way to distinguish between keypad 0
and numeric 0.

	
CURSES_KEYCODE_OVERRIDE_MIXIN = (('KEY_DELETE', 330), ('KEY_INSERT', 331), ('KEY_PGUP', 339), ('KEY_PGDOWN', 338), ('KEY_ESCAPE', 361), ('KEY_SUP', 337), ('KEY_SDOWN', 336), ('KEY_UP_LEFT', 348), ('KEY_UP_RIGHT', 349), ('KEY_CENTER', 350), ('KEY_BEGIN', 354))

	Override mixins for a few curses constants with easier
mnemonics: there may only be a 1:1 mapping when only a
keycode (int) is given, where these phrases are preferred.

sequences.py

This module provides ‘sequence awareness’.

	
class SequenceTextWrapper(width, term, **kwargs)

	Object for wrapping/filling text. The public interface consists of
the wrap() and fill() methods; the other methods are just there for
subclasses to override in order to tweak the default behaviour.
If you want to completely replace the main wrapping algorithm,
you’ll probably have to override _wrap_chunks().

	Several instance attributes control various aspects of wrapping:

	
	width (default: 70)

	the maximum width of wrapped lines (unless break_long_words
is false)

	initial_indent (default: “”)

	string that will be prepended to the first line of wrapped
output. Counts towards the line’s width.

	subsequent_indent (default: “”)

	string that will be prepended to all lines save the first
of wrapped output; also counts towards each line’s width.

	expand_tabs (default: true)

	Expand tabs in input text to spaces before further processing.
Each tab will become 0 .. ‘tabsize’ spaces, depending on its position
in its line. If false, each tab is treated as a single character.

	tabsize (default: 8)

	Expand tabs in input text to 0 .. ‘tabsize’ spaces, unless
‘expand_tabs’ is false.

	replace_whitespace (default: true)

	Replace all whitespace characters in the input text by spaces
after tab expansion. Note that if expand_tabs is false and
replace_whitespace is true, every tab will be converted to a
single space!

	fix_sentence_endings (default: false)

	Ensure that sentence-ending punctuation is always followed
by two spaces. Off by default because the algorithm is
(unavoidably) imperfect.

	break_long_words (default: true)

	Break words longer than ‘width’. If false, those words will not
be broken, and some lines might be longer than ‘width’.

	break_on_hyphens (default: true)

	Allow breaking hyphenated words. If true, wrapping will occur
preferably on whitespaces and right after hyphens part of
compound words.

	drop_whitespace (default: true)

	Drop leading and trailing whitespace from lines.

	max_lines (default: None)

	Truncate wrapped lines.

	placeholder (default: ‘ […]’)

	Append to the last line of truncated text.

Class initializer.

This class supports the wrap() method.

	
_wrap_chunks(chunks)

	Sequence-aware variant of textwrap.TextWrapper._wrap_chunks().

This simply ensures that word boundaries are not broken mid-sequence,
as standard python textwrap would incorrectly determine the length
of a string containing sequences, and may also break consider sequences
part of a “word” that may be broken by hyphen (-), where this
implementation corrects both.

	
_handle_long_word(reversed_chunks, cur_line, cur_len, width)

	Sequence-aware textwrap.TextWrapper._handle_long_word().

This simply ensures that word boundaries are not broken mid-sequence,
as standard python textwrap would incorrectly determine the length
of a string containing sequences, and may also break consider sequences
part of a “word” that may be broken by hyphen (-), where this
implementation corrects both.

	
class Sequence

	A “sequence-aware” version of the base str [https://docs.python.org/3/library/stdtypes.html#str] class.

This unicode-derived class understands the effect of escape sequences
of printable length, allowing a properly implemented rjust(),
ljust(), center(), and length().

Class constructor.

	Parameters

	
	sequence_text – A string that may contain sequences.

	term (blessed.Terminal) – Terminal instance.

	
ljust(width, fillchar=' ')

	Return string containing sequences, left-adjusted.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – Total width given to right-adjust text. If
unspecified, the width of the attached terminal is used (default).

	fillchar (str [https://docs.python.org/3/library/stdtypes.html#str]) – String for padding right-of text.

	Returns

	String of text, right-aligned by width.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
rjust(width, fillchar=' ')

	Return string containing sequences, right-adjusted.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – Total width given to right-adjust text. If
unspecified, the width of the attached terminal is used (default).

	fillchar (str [https://docs.python.org/3/library/stdtypes.html#str]) – String for padding left-of text.

	Returns

	String of text, right-aligned by width.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
center(width, fillchar=' ')

	Return string containing sequences, centered.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – Total width given to center text. If
unspecified, the width of the attached terminal is used (default).

	fillchar (str [https://docs.python.org/3/library/stdtypes.html#str]) – String for padding left and right-of text.

	Returns

	String of text, centered by width.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
length()

	Return the printable length of string containing sequences.

Strings containing term.left or \b will cause “overstrike”,
but a length less than 0 is not ever returned. So _\b+ is a
length of 1 (displays as +), but \b alone is simply a
length of 0.

Some characters may consume more than one cell, mainly those CJK
Unified Ideographs (Chinese, Japanese, Korean) defined by Unicode
as half or full-width characters.

For example:

>>> from blessed import Terminal
>>> from blessed.sequences import Sequence
>>> term = Terminal()
>>> msg = term.clear + term.red(u'コンニチハ'), term
>>> Sequence(msg).length()
10

Note

Although accounted for, strings containing sequences such
as term.clear will not give accurate returns, it is not
considered lengthy (a length of 0).

	
strip(chars=None)

	Return string of sequences, leading, and trailing whitespace removed.

	Parameters

	chars (str [https://docs.python.org/3/library/stdtypes.html#str]) – Remove characters in chars instead of whitespace.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
lstrip(chars=None)

	Return string of all sequences and leading whitespace removed.

	Parameters

	chars (str [https://docs.python.org/3/library/stdtypes.html#str]) – Remove characters in chars instead of whitespace.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
rstrip(chars=None)

	Return string of all sequences and trailing whitespace removed.

	Parameters

	chars (str [https://docs.python.org/3/library/stdtypes.html#str]) – Remove characters in chars instead of whitespace.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
strip_seqs()

	Return text stripped of only its terminal sequences.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
padd()

	Return non-destructive horizontal movement as destructive spacing.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
iter_parse(term, text)

	Generator yields (text, capability) for characters of text.

value for capability may be None, where text is
str [https://docs.python.org/3/library/stdtypes.html#str] of length 1. Otherwise, text is a full
matching sequence of given capability.

	
measure_length(text, term)

	
Deprecated since version 1.12.0..

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Contributing

We welcome contributions via GitHub pull requests:

	Fork a Repo [https://help.github.com/articles/fork-a-repo/]

	Creating a pull request [https://help.github.com/articles/creating-a-pull-request/]

Developing

Prepare a developer environment. Then, from the blessed code folder:

pip install --editable .

Any changes made in this project folder are then made available to the python
interpreter as the ‘blessed’ package regardless of the current working
directory.

Running Tests

Install and run tox

pip install --upgrade tox
tox

Py.test is used as the test runner, supporting positional arguments, you may
for example use looponfailing [https://pytest.org/latest/xdist.html#running-tests-in-looponfailing-mode]
with python 3.5, stopping at the first failing test case, and looping
(retrying) after a filesystem save is detected:

tox -epy35 -- -fx

Test Coverage

When you contribute a new feature, make sure it is covered by tests.
Likewise, a bug fix should include a test demonstrating the bug. Blessed has
nearly 100% line coverage, with roughly 1/2 of the codebase in the form of
tests, which are further combined by a matrix of varying TERM types,
providing plenty of existing test cases to augment or duplicate in your
favor.

Style and Static Analysis

The test runner (tox) ensures all code and documentation complies
with standard python style guides, pep8 and pep257, as well as various
static analysis tools through the sa target, invoked using:

tox -esa

All standards enforced by the underlying style checker tools are adhered to,
with the declarative exception of those found in landscape.yml [https://github.com/jquast/blessed/blob/master/.landscape.yml], or inline
using pylint: disable= directives.

Version History

	1.14

	
	bugfix: wrap() misbehaved for text containing newlines,
#74 [https://github.com/jquast/blessed/issues/74/].

	bugfix: TypeError when using PYTHONOPTIMIZE=2 environment variable,
#84 [https://github.com/jquast/blessed/issues/84/].

	1.13

	
	enhancement: split_seqs() introduced, and 4x cost
reduction in related sequence-aware functions, #29 [https://github.com/jquast/blessed/issues/29/].

	deprecated: blessed.sequences.measure_length function superseded by
iter_parse() if necessary.

	deprecated: warnings about “binary-packed capabilities” are no longer
emitted on strange terminal types, making best effort.

	1.12

	
	enhancement: get_location() returns the (row, col)
position of the cursor at the time of call for attached terminal.

	enhancement: a keyboard now detected as stdin when
stream is sys.stderr [https://docs.python.org/3/library/sys.html#sys.stderr].

	1.11

	
	enhancement: inkey() can return more quickly for
combinations such as Alt + Z when MetaSendsEscape is enabled,
#30 [https://github.com/jquast/blessed/issues/30/].

	enhancement: FormattingString may now be nested, such as
t.red('red', t.underline('rum')), #61 [https://github.com/jquast/blessed/issues/61/]

	1.10

	
	workaround: provide sc and rc for Terminals of kind='ansi',
repairing location() #44 [https://github.com/jquast/blessed/issues/44/].

	bugfix: length of simple SGR reset sequence \x1b[m was not correctly
determined on all terminal types, #45 [https://github.com/jquast/blessed/issues/45/].

	deprecated: _intr_continue arguments introduced in 1.8 are now marked
deprecated in 1.10: beginning with python 3.5, the default behavior is as
though this argument is always True, PEP-475 [https://www.python.org/dev/peps/pep-0475/], blessed does the same.

	1.9

	
	enhancement: break_long_words now supported by
Terminal.wrap()

	Ignore curses.error [https://docs.python.org/3/library/curses.html#curses.error] message 'tparm() returned NULL':
this occurs on win32 or other platforms using a limited curses
implementation, such as PDCurses [http://www.lfd.uci.edu/~gohlke/pythonlibs/#curses], where curses.tparm() [https://docs.python.org/3/library/curses.html#curses.tparm] is
not implemented, or no terminal capability database is available.

	Context manager keypad() emits sequences that enable
“application keys” such as the diagonal keys on the numpad.
This is equivalent to curses.window.keypad() [https://docs.python.org/3/library/curses.html#curses.window.keypad].

	bugfix: translate keypad application keys correctly.

	enhancement: no longer depend on the ‘2to3’ tool for python 3 support.

	enhancement: allow civis and cnorm (hide_cursor, normal_hide)
to work with terminal-type ansi by emulating support by proxy.

	enhancement: new public attribute: kind: the very same as given
Terminal.__init__.kind keyword argument. Or, when not given,
determined by and equivalent to the TERM Environment variable.

	1.8

	
	enhancement: export keyboard-read function as public method getch(),
so that it may be overridden by custom terminal implementers.

	enhancement: allow inkey() and kbhit() to return early
when interrupted by signal by passing argument _intr_continue=False.

	enhancement: allow hpa and vpa (move_x, move_y) to work on
tmux(1) or screen(1) by emulating support by proxy.

	enhancement: add rstrip() and lstrip(),
strips both sequences and trailing or leading whitespace, respectively.

	enhancement: include wcwidth [https://pypi.python.org/pypi/wcwidth] library support for
length(): the printable width of many kinds of CJK
(Chinese, Japanese, Korean) ideographs and various combining characters
may now be determined.

	enhancement: better support for detecting the length or sequences of
externally-generated ecma-48 codes when using xterm or aixterm.

	bugfix: when locale.getpreferredencoding() [https://docs.python.org/3/library/locale.html#locale.getpreferredencoding] returns empty string or
an encoding that is not valid for codecs.getincrementaldecoder,
fallback to ASCII and emit a warning.

	bugfix: ensure FormattingString and
ParameterizingString may be pickled.

	bugfix: allow ~.inkey and related to be called without a keyboard.

	change: term.keyboard_fd is set None if stream or
sys.stdout is not a tty, making term.inkey(), term.cbreak(),
term.raw(), no-op.

	bugfix: \x1bOH (KEY_HOME) was incorrectly mapped as KEY_LEFT.

	1.7

	
	Forked github project erikrose/blessings [https://github.com/erikrose/blessings] to jquast/blessed [https://github.com/jquast/blessed], this
project was previously known as blessings version 1.6 and prior.

	introduced: context manager cbreak(), which is equivalent to
entering terminal state by tty.setcbreak() [https://docs.python.org/3/library/tty.html#tty.setcbreak] and returning
on exit, as well as the lesser recommended raw(),
pairing from tty.setraw() [https://docs.python.org/3/library/tty.html#tty.setraw].

	introduced: inkey(), which will return one or more characters
received by the keyboard as a unicode sequence, with additional attributes
code and name. This allows
application keys (such as the up arrow, or home key) to be detected.
Optional value timeout allows for timed poll.

	introduced: center(), rjust(),
ljust(), allowing text containing sequences to be aligned
to detected horizontal screen width, or by
width specified.

	introduced: wrap() method. Allows text containing sequences to be
word-wrapped without breaking mid-sequence, honoring their printable width.

	introduced: strip(), strips all sequences and
whitespace.

	introduced: strip_seqs() strip only sequences.

	introduced: rstrip() and lstrip() strips
both sequences and trailing or leading whitespace, respectively.

	bugfix: cannot call curses.setupterm() [https://docs.python.org/3/library/curses.html#curses.setupterm] more than once per process
(from Terminal.__init__()): Previously, blessed pretended
to support several instances of different Terminal kind, but was
actually using the kind specified by the first instantiation of
Terminal. A warning is now issued. Although this is
misbehavior is still allowed, a warnings.WarningMessage is now
emitted to notify about subsequent terminal misbehavior.

	bugfix: resolved issue where number_of_colors fails when
does_styling is False. Resolves issue where piping tests
output would fail.

	bugfix: warn and set does_styling to False when the given
kind is not found in the terminal capability database.

	bugfix: allow unsupported terminal capabilities to be callable just as
supported capabilities, so that the return value of
color(n) may be called on terminals without color
capabilities.

	bugfix: for terminals without underline, such as vt220,
term.underline('text') would emit 'text' + term.normal.
Now it emits only 'text'.

	enhancement: some attributes are now properties, raise exceptions when
assigned.

	enhancement: pypy is now a supported python platform implementation.

	enhancement: removed pokemon curses.error exceptions.

	enhancement: do not ignore curses.error [https://docs.python.org/3/library/curses.html#curses.error] exceptions, unhandled
curses errors are legitimate errors and should be reported as a bug.

	enhancement: converted nose tests to pytest, merged travis and tox.

	enhancement: pytest fixtures, paired with a new @as_subprocess
decorator
are used to test a multitude of terminal types.

	enhancement: test accessories @as_subprocess resolves various issues
with different terminal types that previously went untested.

	deprecation: python2.5 is no longer supported (as tox does not supported).

	1.6

	
	Add does_styling. This takes force_styling
into account and should replace most uses of is_a_tty.

	Make is_a_tty a read-only property like does_styling.
Writing to it never would have done anything constructive.

	Add fullscreen`() and hidden_cursor() to the
auto-generated docs.

	1.5.1

	
	Clean up fabfile, removing the redundant test command.

	Add Travis support.

	Make python setup.py test work without spurious errors on 2.6.

	Work around a tox parsing bug in its config file.

	Make context managers clean up after themselves even if there’s an
exception (Vitja Makarov PR #29 [https://github.com/jquast/blessed/pull/29/]).

	Parameterizing a capability no longer crashes when there is no tty
(Vitja Makarov PR #31 [https://github.com/jquast/blessed/pull/31/])

	1.5

	
	Add syntactic sugar and documentation for enter_fullscreen
and exit_fullscreen.

	Add context managers fullscreen() and hidden_cursor().

	Now you can force a Terminal to never to emit styles by
passing keyword argument force_styling=None.

	1.4

	
	Add syntactic sugar for cursor visibility control and single-space-movement
capabilities.

	Endorse the location() context manager for restoring cursor
position after a series of manual movements.

	Fix a bug in which location() that wouldn’t do anything when
passed zeros.

	Allow tests to be run with python setup.py test.

	1.3

	
	Added number_of_colors, which tells you how many colors the
terminal supports.

	Made color(n) and on_color(n) callable to wrap a
string, like the named colors can. Also, make them both fall back to the
setf and setb capabilities (like the named colors do) if the
termcap entries for setaf and setab are not available.

	Allowed color to act as an unparametrized string, not just a
callable.

	Made height and width examine any passed-in stream
before falling back to stdout (This rarely if ever affects actual behavior;
it’s mostly philosophical).

	Made caching simpler and slightly more efficient.

	Got rid of a reference cycle between Terminal and
FormattingString.

	Updated docs to reflect that terminal addressing (as in location())
is 0-based.

	1.2

	
	Added support for Python 3! We need 3.2.3 or greater, because the curses
library couldn’t decide whether to accept strs or bytes before that
(http://bugs.python.org/issue10570).

	Everything that comes out of the library is now unicode. This lets us
support Python 3 without making a mess of the code, and Python 2 should
continue to work unless you were testing types (and badly). Please file a
bug if this causes trouble for you.

	Changed to the MIT License for better world domination.

	Added Sphinx docs.

	1.1

	
	Added nicely named attributes for colors.

	Introduced compound formatting.

	Added wrapper behavior for styling and colors.

	Let you force capabilities to be non-empty, even if the output stream is
not a terminal.

	Added is_a_tty to determine whether the output stream is a
terminal.

	Sugared the remaining interesting string capabilities.

	Allow location() to operate on just an x or y coordinate.

	1.0

	
	Extracted Blessed from nose-progressive [http://pypi.python.org/pypi/nose-progressive/].

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 blessed	

 	
 	
 blessed.formatters	

 	
 	
 blessed.keyboard	

 	
 	
 blessed.sequences	

 	
 	
 blessed.terminal	

 Index

 Index pages by letter:

 _
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

 Full index on one page
 (can